Higher integrability of determinants and weak convergence in L1.

Stefan Müller

Journal für die reine und angewandte Mathematik (1990)

  • Volume: 412, page 20-34
  • ISSN: 0075-4102; 1435-5345/e

How to cite

top

Müller, Stefan. "Higher integrability of determinants and weak convergence in L1.." Journal für die reine und angewandte Mathematik 412 (1990): 20-34. <http://eudml.org/doc/153276>.

@article{Müller1990,
author = {Müller, Stefan},
journal = {Journal für die reine und angewandte Mathematik},
keywords = {weak convergence; higher integrability property; Jacobian; quasiregular mappings; “reverse-Hölder” type inequality; isoperimetric inequality; maximal functions},
pages = {20-34},
title = {Higher integrability of determinants and weak convergence in L1.},
url = {http://eudml.org/doc/153276},
volume = {412},
year = {1990},
}

TY - JOUR
AU - Müller, Stefan
TI - Higher integrability of determinants and weak convergence in L1.
JO - Journal für die reine und angewandte Mathematik
PY - 1990
VL - 412
SP - 20
EP - 34
KW - weak convergence; higher integrability property; Jacobian; quasiregular mappings; “reverse-Hölder” type inequality; isoperimetric inequality; maximal functions
UR - http://eudml.org/doc/153276
ER -

Citations in EuDML Documents

top
  1. O. Martio, Lebesgue measure and mappings of the Sobolev class W 1 , n
  2. Flavia Giannetti, Anna Verde, Variational integrals for elliptic complexes
  3. Dong Ye, Prescription de la forme volume
  4. J. Sivaloganathan, Singular minimisers in the calculus of variations : a degenerate form of cavitation
  5. L. Greco, T. Iwaniec, New inequalities for the jacobian
  6. S. Müller, Tang Qi, B. S. Yan, On a new class of elastic deformations not allowing for cavitation
  7. Jonathan Bevan, Xiaodong Yan, Minimizers with topological singularities in two dimensional elasticity
  8. Xiaodong Yan, Jonathan Bevan, Minimizers with topological singularities in two dimensional elasticity
  9. Martin Kružík, On convergence of gradient-dependent integrands
  10. Martin Kružík, Quasiconvexity at the boundary and concentration effects generated by gradients

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.