Weighted convolution algebras and their homomorphisms

Sandy Grabiner

Banach Center Publications (1994)

  • Volume: 30, Issue: 1, page 175-190
  • ISSN: 0137-6934

How to cite


Grabiner, Sandy. "Weighted convolution algebras and their homomorphisms." Banach Center Publications 30.1 (1994): 175-190. <http://eudml.org/doc/262862>.

author = {Grabiner, Sandy},
journal = {Banach Center Publications},
language = {eng},
number = {1},
pages = {175-190},
title = {Weighted convolution algebras and their homomorphisms},
url = {http://eudml.org/doc/262862},
volume = {30},
year = {1994},

AU - Grabiner, Sandy
TI - Weighted convolution algebras and their homomorphisms
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 175
EP - 190
LA - eng
UR - http://eudml.org/doc/262862
ER -


  1. [Al] G. R. Allan, Ideals of rapidly growing functions, in: Proc. International Symposium on Functional Analysis and its Applications, Ibadan, Nigeria, 1977. Zbl0448.46027
  2. [BD] W. G. Bade and H. G. Dales, Norms and ideals in radical convolution algebras, J. Funct. Anal. 41 (1981), 77-109. 
  3. [CN] Conference on Automatic Continuity and Banach Algebras, R. J. Loy (ed.), Proc. Centre Math. Anal. Austral. Nat. Univ. 21, 1989. 
  4. [Da1] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183. Zbl0391.46037
  5. [Da2] H. G. Dales, Convolution algebras on the real line, in [LB], 180-209. 
  6. [DM] H. G. Dales and J. P. McClure, Nonstandard ideals in radical convolution algebras on a half-line, Canad. J. Math. 39 (1987), 309-321. Zbl0621.46045
  7. [Do] Y. Domar, Extensions of the Titchmarsh Convolution Theorem with applications in the theory of invariant subspaces, Proc. London Math. Soc. 46 (1983), 288-300. Zbl0468.46038
  8. [DS] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Wiley, New York, 1958. 
  9. [Es] J. Esterle, Elements for a classification of commutative radical Banach algebras, in [LB], 4-65. 
  10. [GRS] I. M. Gelfand, D. A. Raikov and G. E. Shilov, Commutative Normed Rings, Chelsea, New York, 1964. 
  11. [Gh1] F. Ghahramani, Homomorphisms and derivations on weighted convolution algebras, J. London Math. Soc. 21 (1980), 149-161. Zbl0435.43005
  12. [Gh2] F. Ghahramani, Endomorphisms of L¹(ℝ⁺), J. Math. Anal. Appl. 85 (1982), 308-315. 
  13. [Gh3] F. Ghahramani, Isomorphisms between radical weighted convolution algebras, Proc. Edinburgh Math. Soc. 26 (1983), 343-351. Zbl0518.43002
  14. [Gh4] F. Ghahramani, Automorphisms of weighted measure algebras, in [CN], 144-154. 
  15. [Gh5] F. Ghahramani, Isomorphisms between semisimple weighted measure algebras, Bull. London Math. Soc. 23 (1991), 465-469. Zbl0777.43003
  16. [GG1] F. Ghahramani and S. Grabiner, Standard homomorphisms and convergent sequences in weighted convolution algebras, Illinois J. Math. 36 (1992), 505-527. Zbl0784.46033
  17. [GG2] F. Ghahramani and S. Grabiner, The L p theory of standard homomorphisms, Pacific J. Math., to appear. Zbl0822.46028
  18. [GGM] F. Ghahramani, S. Grabiner and J. P. McClure, Standard homomorphisms and regulated weights on weighted convolution algebras, J. Funct. Anal. 91 (1990), 278-286. Zbl0728.46035
  19. [Gr1] S. Grabiner, Derivations and automorphisms of Banach algebras of power series, Mem. Amer. Math. Soc. 146 (1974). 
  20. [Gr2] S. Grabiner, Weighted convolution algebras on the half line, J. Math. Anal. Appl. 83 (1981), 531-553. Zbl0489.46023
  21. [Gr3] S. Grabiner, Weighted convolution algebras as analogues of Banach algebras of power series, in [LB], 282-289. 
  22. [Gr4] S. Grabiner, Extremely non-standard ideals and non-injective operational calculi, J. London Math. Soc. 30 (1984), 129-135. Zbl0571.46035
  23. [Gr5] S. Grabiner, Homomorphisms and semigroups in weighted convolution algebras, Indiana Univ. Math. J. 37 (1988), 589-615. Zbl0676.46037
  24. [Gr6] S. Grabiner, Semigroups and the structure of weighted convolution algebras, in [CN], 155-169. 
  25. [HP] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, R.I., 1957. 
  26. [KS] H. Kamowitz and S. Scheinberg, Derivations and automorphisms of L¹(0,1), Trans. Amer. Math. Soc. 135 (1969), 415-427. Zbl0172.41703
  27. [LB] Radical Banach Algebras and Automatic Continuity, J. Bachar, H. G. Dales et al. (eds.), Lecture Notes in Math. 975, Springer, Berlin, 1983. 
  28. [Mi] J. Mikusiński, Operational Calculus, 2nd ed., 2 vols. (second volume co-authored by T. K. Boehme), Pergamon, Oxford, 1983 and 1987. 
  29. [Si1] A. M. Sinclair, Bounded approximate identities, factorization, and a convolution algebra, J. Funct. Anal. 29 (1978), 308-318. Zbl0385.46030
  30. [Si2] A. M. Sinclair, Continuous Semigroups in Banach Algebras, London Math. Soc. Lecture Note Ser. 63, Cambridge Univ. Press, 1982. 
  31. [So] M. Solovej, Ideal structure in radical convolution algebras, thesis, Copenhagen, 1990. 
  32. [Th] M. P. Thomas, A non-standard ideal of a radical Banach algebra of power series, Acta Math. 152 (1984), 199-217. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.