Page 1

Displaying 1 – 12 of 12

Showing per page

Automorphisms and derivations of a Fréchet algebra of locally integrable functions

F. Ghahramani, J. McClure (1992)

Studia Mathematica

We find representations for the automorphisms, derivations and multipliers of the Fréchet algebra L ¹ l o c of locally integrable functions on the half-line + . We show, among other things, that every automorphism θ of L ¹ l o c is of the form θ = φ a e λ X e D , where D is a derivation, X is the operator of multiplication by coordinate, λ is a complex number, a > 0, and φ a is the dilation operator ( φ a f ) ( x ) = a f ( a x ) ( f L ¹ l o c , x + ). It is also shown that the automorphism group is a topological group with the topology of uniform convergence on bounded...

Commutative, radical amenable Banach algebras

C. Read (2000)

Studia Mathematica

There has been a considerable search for radical, amenable Banach algebras. Noncommutative examples were finally found by Volker Runde [R]; here we present the first commutative examples. Centrally placed within the construction, the reader may be pleased to notice a reprise of the undergraduate argument that shows that a normed space with totally bounded unit ball is finite-dimensional; we use the same idea (approximate the norm 1 vector x within distance η by a “good” vector y 1 ; then approximate...

Fréchet algebras and formal power series

Graham Allan (1996)

Studia Mathematica

The class of elements of locally finite closed descent in a commutative Fréchet algebra is introduced. Using this notion, those commutative Fréchet algebras in which the algebra ℂ[[X]] may be embedded are completely characterized, and some applications to the theory of automatic continuity are given.

Normed "upper interval" algebras without nontrivial closed subalgebras

C. J. Read (2005)

Studia Mathematica

It is a long standing open problem whether there is any infinite-dimensional commutative Banach algebra without nontrivial closed ideals. This is in some sense the Banach algebraists' counterpart to the invariant subspace problem for Banach spaces. We do not here solve this famous problem, but solve a related problem, that of finding (necessarily commutative) infinite-dimensional normed algebras which do not even have nontrivial closed subalgebras. Our examples are incomplete normed algebras rather...

Power-bounded elements and radical Banach algebras

Graham Allan (1997)

Banach Center Publications

Firstly, we give extensions of results of Gelfand, Esterle and Katznelson--Tzafriri on power-bounded operators. Secondly, some results and questions relating to power-bounded elements in the unitization of a commutative radical Banach algebra are discussed.

Quasicompact endomorphisms of commutative semiprime Banach algebras

Joel F. Feinstein, Herbert Kamowitz (2010)

Banach Center Publications

This paper is a continuation of our study of compact, power compact, Riesz, and quasicompact endomorphisms of commutative Banach algebras. Previously it has been shown that if B is a unital commutative semisimple Banach algebra with connected character space, and T is a unital endomorphism of B, then T is quasicompact if and only if the operators Tⁿ converge in operator norm to a rank-one unital endomorphism of B. In this note the discussion is extended in two ways: we discuss endomorphisms of commutative...

Raising bounded groups and splitting of radical extensions of commutative Banach algebras

W. Bade, P. Curtis, A. Sinclair (2000)

Studia Mathematica

Let A be a commutative unital Banach algebra and let A/ℛ be the quotient algebra of A modulo its radical ℛ. This paper is concerned with raising bounded groups in A/ℛ to bounded groups in the algebra A. The results will be applied to the problem of splitting radical extensions of certain Banach algebras.

Weak* properties of weighted convolution algebras II

Sandy Grabiner (2010)

Studia Mathematica

We show that if ϕ is a continuous homomorphism between weighted convolution algebras on ℝ⁺, then its extension to the corresponding measure algebras is always weak* continuous. A key step in the proof is showing that our earlier result that normalized powers of functions in a convolution algebra on ℝ⁺ go to zero weak* is also true for most measures in the corresponding measure algebra. For some algebras, we can determine precisely which measures have normalized powers converging to zero weak*. We...

Currently displaying 1 – 12 of 12

Page 1