Homogeneous extremal function for a ball in ℝ²
Annales Polonici Mathematici (1999)
- Volume: 71, Issue: 2, page 141-150
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topMirosław Baran. "Homogeneous extremal function for a ball in ℝ²." Annales Polonici Mathematici 71.2 (1999): 141-150. <http://eudml.org/doc/262867>.
@article{MirosławBaran1999,
abstract = {We point out relations between Siciak’s homogeneous extremal function $Ψ_B$ and the Cauchy-Poisson transform in case $B$ is a ball in ℝ². In particular, we find effective formulas for $Ψ_B$ for an important class of balls. These formulas imply that, in general, $Ψ_B$ is not a norm in ℂ².},
author = {Mirosław Baran},
journal = {Annales Polonici Mathematici},
keywords = {homogeneous extremal function; Cauchy-Poisson transform; plurisubharmonic functions},
language = {eng},
number = {2},
pages = {141-150},
title = {Homogeneous extremal function for a ball in ℝ²},
url = {http://eudml.org/doc/262867},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Mirosław Baran
TI - Homogeneous extremal function for a ball in ℝ²
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 2
SP - 141
EP - 150
AB - We point out relations between Siciak’s homogeneous extremal function $Ψ_B$ and the Cauchy-Poisson transform in case $B$ is a ball in ℝ². In particular, we find effective formulas for $Ψ_B$ for an important class of balls. These formulas imply that, in general, $Ψ_B$ is not a norm in ℂ².
LA - eng
KW - homogeneous extremal function; Cauchy-Poisson transform; plurisubharmonic functions
UR - http://eudml.org/doc/262867
ER -
References
top- [B1] M. Baran, Siciak’s extremal function of convex sets in , Ann. Polon. Math. 48 (1988), 275-280. Zbl0661.32023
- [B2] M. Baran, Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in , Michigan Math. J. 39 (1992), 395-404. Zbl0783.32009
- [B3] M. Baran, Complex equilibrium measure and Bernstein type theorems for compact sets in , Proc. Amer. Math. Soc. 123 (1995), 485-494. Zbl0813.32011
- [B4] M. Baran, Bernstein type theorems for compact sets in revisited, J. Approx. Theory 69 (1992), 156-166.
- [CL] E. W. Cheney and W. A. Light, Approximation Theory in Tensor Product Spaces, Lecture Notes in Math. 1169, Springer, Berlin, 1985. Zbl0575.41001
- [D] L. M. Drużkowski, Effective formula for the crossnorm in complexified unitary spaces, Univ. Iagel. Acta Math. 16 (1974), 47-53. Zbl0289.46017
- [Kl] M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
- [L] F. Leja, Teoria funkcji analitycznych [Theory of Analytic Functions], PWN, War- szawa, 1957 (in Polish).
- [Si1] J. Siciak, On an extremal function and domains of convergence of series of homogeneous polynomials, Ann. Polon. Math. 25 (1961), 297-307. Zbl0192.18102
- [Si2] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. Zbl0111.08102
- [Si3] J. Siciak, Holomorphic continuation of harmonic functions, Ann. Polon. Math. 29 (1974), 67-73. Zbl0247.32011
- [Si4] J. Siciak, Extremal plurisubharmonic functions in , ibid. 39 (1981), 175-211.
- [Si5] J. Siciak, Extremal Plurisubharmonic Functions and Capacities in , Sophia Kokyuroku in Math. 14, Sophia Univ., Tokyo, 1982.
- [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.