The Catalan Numbers. Part II 1
Formalized Mathematics (2006)
- Volume: 14, Issue: 4, page 153-159
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45-48, 2005.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [8] Dorota Czestochowska and Adam Grabowski. Catalan numbers. Formalized Mathematics, 12(3):351-353, 2004.
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [12] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
- [13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
- [14] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
- [15] Karol Pak. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399-406, 2005.
- [16] Karol Pak. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.
- [17] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.
- [18] Konrad Raczkowski and Andrzej Nedzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.
- [19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [21] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [22] Andrzej Trybulec. Function domains and Fránkel operator. Formalized Mathematics, 1(3):495-500, 1990.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [26] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
- [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
Citations in EuDML Documents
top- Michał Trybulec, Formal Languages - Concatenation and Closure
- Karol Pąk, Bertrand’s Ballot Theorem
- Michał Trybulec, Regular Expression Quantifiers - m to n Occurrences
- Michał Trybulec, String Rewriting Systems
- Michał Trybulec, Labelled State Transition Systems
- Michał Trybulec, Equivalence of Deterministic and Nondeterministic Epsilon Automata
- Michał Trybulec, Regular Expression Quantifiers - at least m Occurrences