Equivalence of Deterministic and Nondeterministic Epsilon Automata
Formalized Mathematics (2009)
- Volume: 17, Issue: 2, page 193-199
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topMichał Trybulec. "Equivalence of Deterministic and Nondeterministic Epsilon Automata." Formalized Mathematics 17.2 (2009): 193-199. <http://eudml.org/doc/266671>.
@article{MichałTrybulec2009,
abstract = {Based on concepts introduced in [14], semiautomata and leftlanguages, automata and right-languages, and langauges accepted by automata are defined. The powerset construction is defined for transition systems, semiautomata and automata. Finally, the equivalence of deterministic and nondeterministic epsilon automata is shown.},
author = {Michał Trybulec},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {193-199},
title = {Equivalence of Deterministic and Nondeterministic Epsilon Automata},
url = {http://eudml.org/doc/266671},
volume = {17},
year = {2009},
}
TY - JOUR
AU - Michał Trybulec
TI - Equivalence of Deterministic and Nondeterministic Epsilon Automata
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 2
SP - 193
EP - 199
AB - Based on concepts introduced in [14], semiautomata and leftlanguages, automata and right-languages, and langauges accepted by automata are defined. The powerset construction is defined for transition systems, semiautomata and automata. Finally, the equivalence of deterministic and nondeterministic epsilon automata is shown.
LA - eng
UR - http://eudml.org/doc/266671
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [10] Karol Pąk. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153-159, 2006, doi:10.2478/v10037-006-0019-7.[Crossref]
- [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
- [13] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics, 15(1):11-15, 2007, doi:10.2478/v10037-007-0002-y.[Crossref]
- [14] Michał Trybulec. Labelled state transition systems. Formalized Mathematics, 17(2):163-171, 2009, doi: 10.2478/v10037-009-0019-5.[Crossref]
- [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [16] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
- [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.