An overview of some recent developments on the Invariant Subspace Problem

Isabelle Chalendar; Jonathan R. Partington

Concrete Operators (2013)

  • Volume: 1, page 1-10
  • ISSN: 2299-3282

Abstract

top
This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.

How to cite

top

Isabelle Chalendar, and Jonathan R. Partington. "An overview of some recent developments on the Invariant Subspace Problem." Concrete Operators 1 (2013): 1-10. <http://eudml.org/doc/266557>.

@article{IsabelleChalendar2013,
abstract = {This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.},
author = {Isabelle Chalendar, Jonathan R. Partington},
journal = {Concrete Operators},
keywords = {Invariant subspace; Universal operator; Weighted shift; Composition operator; Bishop operator; Strictly singular; Finitely strictly singular; invariant subspace; universal operator; weighted shift; composition operator; strictly singular; finitely strictly singular},
language = {eng},
pages = {1-10},
title = {An overview of some recent developments on the Invariant Subspace Problem},
url = {http://eudml.org/doc/266557},
volume = {1},
year = {2013},
}

TY - JOUR
AU - Isabelle Chalendar
AU - Jonathan R. Partington
TI - An overview of some recent developments on the Invariant Subspace Problem
JO - Concrete Operators
PY - 2013
VL - 1
SP - 1
EP - 10
AB - This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.
LA - eng
KW - Invariant subspace; Universal operator; Weighted shift; Composition operator; Bishop operator; Strictly singular; Finitely strictly singular; invariant subspace; universal operator; weighted shift; composition operator; strictly singular; finitely strictly singular
UR - http://eudml.org/doc/266557
ER -

References

top
  1. Ambrozie C., Müller V., Invariant subspaces for polynomially bounded operators. J. Funct. Anal., 2004, 213, 321–345 Zbl1056.47006
  2. Androulakis G., Dodos P., Sirotkin G., Troitsky V.G., Classes of strictly singular operators and their products, Israel J. Math., (to appear) Zbl1168.47018
  3. Anisca R., Troitsky V.G., Minimal vectors of positive operators, Indiana Univ. Math. J., 2005, 54, 861–872[Crossref] Zbl1080.47010
  4. Ansari S., Enflo P., Extremal vectors and invariant subspaces, Trans. Amer. Math. Soc., 1998, 350, 539–558 Zbl0888.47002
  5. Argyros S.A., Haydon R.G., A hereditarily indecomposable L∞-space that solves the scalar-plus-compact problem, Acta Math., 2011, 206, 1–54 Zbl1223.46007
  6. Aronszajn N., Smith K.T., Invariant subspaces of completely continuous operators, Ann. of Math. (2), 1954, 60, 345–350[Crossref] Zbl0056.11302
  7. Atzmon A., An operator without invariant subspace on a nuclear Fréchet space, Ann. of Math. (2), 1983, 117, 669–694 Zbl0553.47002
  8. Beauzamy B., Un opérateur sans sous-espace invariant: simplification de l’exemple de P. Enflo, Integral Equations Operator Theory, 1985, 8, 314–384 Zbl0571.47002
  9. Bercovici H., Foias C., Pearcy C., Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional conference series in mathematics, 56. A.M.S., Providence, 1985 Zbl0569.47007
  10. Bercovici H., Foias C., Pearcy C., Two Banach space methods and dual operator algebras, J. Funct. Anal., 1988, 78, 306–345 [Crossref] Zbl0661.46004
  11. Bernstein A.R., Robinson A., Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos, Pacific J. Math., 1966, 16, 421–431 Zbl0141.12903
  12. Blecher D.P., Davie A.M., Invariant subspaces for an operator on L2 (Π) composed of a multiplication and a translation, J. Operator Theory, 1990, 23, 115–123 Zbl0743.47003
  13. Brown S.W., Some invariant subspaces for subnormal operators, Integral Equations Operator Theory, 1978, 1, 310–333 Zbl0416.47009
  14. Brown S.W., Chevreau B., Pearcy C., On the structure of contraction operators II, J. Funct. Anal., 1988, 76, 30–55 [Crossref] Zbl0641.47013
  15. Caradus S.R., Universal operators and invariant subspaces, Proc. Amer. Math. Soc., 1969, 23, 526–527 [Crossref] Zbl0186.19204
  16. Casazza P., Lohman R., A general construction of spaces of the type of R. C. James, Canad. J. Math., 1975, 27, 1263–1270 Zbl0314.46017
  17. Chalendar I., Fricain E., Popov A.I., Timotin D., Troitsky V.G., Finitely strictly singular operators between James spaces, J. Funct. Anal., 2009, 256, 1258–1268 Zbl1156.47027
  18. Chalendar I., Partington J.R., Convergence properties of minimal vectors for normal operators and weighted shifts, Proc. Amer. Math. Soc., 2005, 133, 501–510 Zbl1066.41016
  19. Chalendar I., Partington J.R., Variations on Lomonosov’s theorem via the technique of minimal vectors, Acta Sci. Math. (Szeged), 2005, 71, 603–617 Zbl1102.41020
  20. Chalendar I., Partington J.R., Invariant subspaces for products of Bishop operators, Acta Sci. Math. (Szeged), 2008, 74, 719–727 Zbl1199.47035
  21. Chalendar I., Partington J.R., Modern approaches to the invariant-subspace problem, Cambridge Tracts in Mathematics, 188, Cambridge University Press, Cambridge, 2011 Zbl1231.47005
  22. Cima J.A., Thomson J., Wogen W., On some properties of composition operators, Indiana Univ. Math. J., 1974/75, 24, 215–220 Zbl0276.47038
  23. Davie A.M., Invariant subspaces for Bishop’s operators, Bull. London Math. Soc., 1974, 6, 343–348 [Crossref] Zbl0287.47003
  24. Delpech S., A short proof of Pitt’s compactness theorem, Proc. Amer. Math. Soc., 2009, 137, 1371–1372 Zbl1171.46013
  25. Enflo P., On the invariant subspace problem in Banach spaces, Séminaire Maurey–Schwartz (1975–1976) Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14–15, 7 pp., Centre Math., École Polytech., Palaiseau, 1976 Zbl0341.46016
  26. Enflo P., On the invariant subspace problem for Banach spaces, Acta Math., 1987, 158, 213–313 Zbl0663.47003
  27. Enflo P., Extremal vectors for a class of linear operators, Functional analysis and economic theory (Samos, 1996), 61–64, Springer, Berlin, 1998 Zbl0922.47001
  28. Enflo P., Hõim T., Some results on extremal vectors and invariant subspaces, Proc. Amer. Math. Soc., 2003, 131, 379–387 Zbl1043.47007
  29. Fabian M., Halala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V., Functional analysis and infinite geometry, CMS Books in Mathematics, Springer-Verlag, New-York, 2001 Zbl0981.46001
  30. Flattot A., Hyperinvariant subspaces for Bishop-type operators, Acta Sci. Math. (Szeged), 2008, 74, 689–718 Zbl1210.47020
  31. Fulton W., Algebraic topology, Springer–Verlag, New York, 1995 Zbl0852.55001
  32. Gallardo-Gutiérrez E.A., Gorkin P., Minimal invariant subspaces for composition operators, J. Math. Pures Appl. (9), 2011, 95, 245–259 [Crossref] Zbl1213.47007
  33. Gowers W.T., Maurey B., Banach spaces with small spaces of operators, Math. Ann., 1997, 307, 543–568 Zbl0876.46006
  34. Grünbaum B., Convex polytopes, 2nd edition, Graduate Texts in Mathematics, 221, Springer–Verlag, New York, 2003 Zbl1033.52001
  35. James R.C., A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A., 1951, 37, 174–177 Zbl0042.36102
  36. Kim H.J., Hyperinvariant subspaces for operators having a normal part, Oper. Matrices, 2011, 5, 487–494 Zbl1238.47005
  37. Kumar R., Partington J.R., Weighted composition operators on Hardy and Bergman spaces, Recent advances in operator theory, operator algebras, and their applications, 157–167, Oper. Theory Adv. Appl., 153, Birkhäuser, Basel, 2005 Zbl1081.47030
  38. Lindenstrauss J., Tzafriri L., Classical Banach spaces. I, Springer-Verlag, Berlin, 1977 Zbl0362.46013
  39. Littlewood J.E., On inequalities in the theory of functions, Proc. London Math. Soc. (2), 1925, 23, 481–519 Zbl51.0247.03
  40. Lomonosov V.I., Invariant subspaces for operators commuting with compact operators, Funct. Anal. Appl., 1973, 7, 213–214 Zbl0293.47003
  41. MacDonald G.W., Invariant subspaces for Bishop-type operators, J. Funct. Anal., 1990, 91, 287–311 Zbl0727.47002
  42. Maslyuchenko V., Plichko A., Quasireflexive locally convex spaces without Banach subspaces, Teor. Funktsiˇı Funktsional. Anal. i Prilozhen., 1985, 44, 78–84 (in Russian), translation in J. Soviet Math., 1990, 48, 307–312 Zbl0582.46005
  43. Matache V., On the minimal invariant subspaces of the hyperbolic composition operator, Proc. Amer. Math. Soc., 1993, 119, 837–841 Zbl0799.47015
  44. Milman V.D., Operators of class C0 and C0*, Teor. Funktsiˇı Funkcional. Anal. i Priložen., 1970, 10, 15–26 
  45. Mortini R., Cyclic subspaces and eigenvectors of the hyperbolic composition operator, Travaux mathématiques, Fasc. VII, 69–79, Sém. Math. Luxembourg, Centre Univ. Luxembourg, Luxembourg, 1995 Zbl0841.46015
  46. Nordgren E., Rosenthal P., Wintrobe F.S., Invertible composition operators on Hp, J. Funct. Anal., 1987, 73, 324–344 Zbl0643.47034
  47. Partington J.R., Pozzi E., Universal shifts and composition operators, Oper. Matrices, 2011, 5, 455–467 Zbl1244.47007
  48. Pisier G., A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc., 1997, 10, 351–369 [Crossref] Zbl0869.47014
  49. Plichko A., Superstrictly singular and superstrictly cosingular operators, Functional analysis and its applications, 2004, North-Holland Math. Stud., 197, Elsevier, Amsterdam, 239–255 Zbl1124.46006
  50. Popov A.I., Schreier singular operators, Houston J. Math., 2009, 35, 209–222 Zbl1222.46013
  51. Pozzi E., Universality of weighted composition operators on L2([0, 1]) and Sobolev spaces, Acta Sci. Math. (Szeged), (to appear) Zbl1289.47015
  52. Read C., A solution to the invariant subspace problem, Bull. London Math. Soc., 1984, 16, 337–401 [Crossref] Zbl0566.47003
  53. Read C., A solution to the invariant subspace problem on the space l1, Bull. London Math. Soc., 1985, 17, 305–317 [Crossref] Zbl0574.47006
  54. Read C., A short proof concerning the invariant subspace problem, J. London Math. Soc. (2), 1986, 34, 335–348 Zbl0664.47006
  55. Read C., Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. (2), 1997, 56, 595–606 [Crossref] Zbl0892.47005
  56. Read C., Strictly singular operators and the invariant subspace problem, Studia Math., 1999, 132, 203–226 Zbl0929.47004
  57. Singer I., Bases in Banach Spaces I, Springer-Verlag, New York–Berlin, 1970 Zbl0198.16601
  58. Sari B., Schlumprecht Th., Tomczak-Jaegermann N., Troitsky V.G., On norm closed ideals in L(lp⊗ lq), Studia Math., 2007, 179, 239–262 Zbl1116.47058
  59. Thomson J.E., Invariant subspaces for algebras of subnormal operators, Proc. Amer. Math. Soc., 1986, 96, 462–464 [Crossref] Zbl0593.47025
  60. Troitsky V.G., Lomonosov’s theorem cannot be extended to chains of four operators, Proc. Amer. Math. Soc., 2000, 128, 521–525 Zbl0940.47004
  61. Troitsky V.G., Minimal vectors in arbitrary Banach spaces, Proc. Amer. Math. Soc., 2004, 132, 1177–1180 Zbl1060.47011
  62. Ziegler G.M., Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1994 Zbl0823.52002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.