An overview of some recent developments on the Invariant Subspace Problem
Isabelle Chalendar; Jonathan R. Partington
Concrete Operators (2013)
- Volume: 1, page 1-10
- ISSN: 2299-3282
Access Full Article
topAbstract
topHow to cite
topIsabelle Chalendar, and Jonathan R. Partington. "An overview of some recent developments on the Invariant Subspace Problem." Concrete Operators 1 (2013): 1-10. <http://eudml.org/doc/266557>.
@article{IsabelleChalendar2013,
abstract = {This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.},
author = {Isabelle Chalendar, Jonathan R. Partington},
journal = {Concrete Operators},
keywords = {Invariant subspace; Universal operator; Weighted shift; Composition operator; Bishop operator; Strictly singular; Finitely strictly singular; invariant subspace; universal operator; weighted shift; composition operator; strictly singular; finitely strictly singular},
language = {eng},
pages = {1-10},
title = {An overview of some recent developments on the Invariant Subspace Problem},
url = {http://eudml.org/doc/266557},
volume = {1},
year = {2013},
}
TY - JOUR
AU - Isabelle Chalendar
AU - Jonathan R. Partington
TI - An overview of some recent developments on the Invariant Subspace Problem
JO - Concrete Operators
PY - 2013
VL - 1
SP - 1
EP - 10
AB - This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.
LA - eng
KW - Invariant subspace; Universal operator; Weighted shift; Composition operator; Bishop operator; Strictly singular; Finitely strictly singular; invariant subspace; universal operator; weighted shift; composition operator; strictly singular; finitely strictly singular
UR - http://eudml.org/doc/266557
ER -
References
top- Ambrozie C., Müller V., Invariant subspaces for polynomially bounded operators. J. Funct. Anal., 2004, 213, 321–345 Zbl1056.47006
- Androulakis G., Dodos P., Sirotkin G., Troitsky V.G., Classes of strictly singular operators and their products, Israel J. Math., (to appear) Zbl1168.47018
- Anisca R., Troitsky V.G., Minimal vectors of positive operators, Indiana Univ. Math. J., 2005, 54, 861–872[Crossref] Zbl1080.47010
- Ansari S., Enflo P., Extremal vectors and invariant subspaces, Trans. Amer. Math. Soc., 1998, 350, 539–558 Zbl0888.47002
- Argyros S.A., Haydon R.G., A hereditarily indecomposable L∞-space that solves the scalar-plus-compact problem, Acta Math., 2011, 206, 1–54 Zbl1223.46007
- Aronszajn N., Smith K.T., Invariant subspaces of completely continuous operators, Ann. of Math. (2), 1954, 60, 345–350[Crossref] Zbl0056.11302
- Atzmon A., An operator without invariant subspace on a nuclear Fréchet space, Ann. of Math. (2), 1983, 117, 669–694 Zbl0553.47002
- Beauzamy B., Un opérateur sans sous-espace invariant: simplification de l’exemple de P. Enflo, Integral Equations Operator Theory, 1985, 8, 314–384 Zbl0571.47002
- Bercovici H., Foias C., Pearcy C., Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional conference series in mathematics, 56. A.M.S., Providence, 1985 Zbl0569.47007
- Bercovici H., Foias C., Pearcy C., Two Banach space methods and dual operator algebras, J. Funct. Anal., 1988, 78, 306–345 [Crossref] Zbl0661.46004
- Bernstein A.R., Robinson A., Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos, Pacific J. Math., 1966, 16, 421–431 Zbl0141.12903
- Blecher D.P., Davie A.M., Invariant subspaces for an operator on L2 (Π) composed of a multiplication and a translation, J. Operator Theory, 1990, 23, 115–123 Zbl0743.47003
- Brown S.W., Some invariant subspaces for subnormal operators, Integral Equations Operator Theory, 1978, 1, 310–333 Zbl0416.47009
- Brown S.W., Chevreau B., Pearcy C., On the structure of contraction operators II, J. Funct. Anal., 1988, 76, 30–55 [Crossref] Zbl0641.47013
- Caradus S.R., Universal operators and invariant subspaces, Proc. Amer. Math. Soc., 1969, 23, 526–527 [Crossref] Zbl0186.19204
- Casazza P., Lohman R., A general construction of spaces of the type of R. C. James, Canad. J. Math., 1975, 27, 1263–1270 Zbl0314.46017
- Chalendar I., Fricain E., Popov A.I., Timotin D., Troitsky V.G., Finitely strictly singular operators between James spaces, J. Funct. Anal., 2009, 256, 1258–1268 Zbl1156.47027
- Chalendar I., Partington J.R., Convergence properties of minimal vectors for normal operators and weighted shifts, Proc. Amer. Math. Soc., 2005, 133, 501–510 Zbl1066.41016
- Chalendar I., Partington J.R., Variations on Lomonosov’s theorem via the technique of minimal vectors, Acta Sci. Math. (Szeged), 2005, 71, 603–617 Zbl1102.41020
- Chalendar I., Partington J.R., Invariant subspaces for products of Bishop operators, Acta Sci. Math. (Szeged), 2008, 74, 719–727 Zbl1199.47035
- Chalendar I., Partington J.R., Modern approaches to the invariant-subspace problem, Cambridge Tracts in Mathematics, 188, Cambridge University Press, Cambridge, 2011 Zbl1231.47005
- Cima J.A., Thomson J., Wogen W., On some properties of composition operators, Indiana Univ. Math. J., 1974/75, 24, 215–220 Zbl0276.47038
- Davie A.M., Invariant subspaces for Bishop’s operators, Bull. London Math. Soc., 1974, 6, 343–348 [Crossref] Zbl0287.47003
- Delpech S., A short proof of Pitt’s compactness theorem, Proc. Amer. Math. Soc., 2009, 137, 1371–1372 Zbl1171.46013
- Enflo P., On the invariant subspace problem in Banach spaces, Séminaire Maurey–Schwartz (1975–1976) Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14–15, 7 pp., Centre Math., École Polytech., Palaiseau, 1976 Zbl0341.46016
- Enflo P., On the invariant subspace problem for Banach spaces, Acta Math., 1987, 158, 213–313 Zbl0663.47003
- Enflo P., Extremal vectors for a class of linear operators, Functional analysis and economic theory (Samos, 1996), 61–64, Springer, Berlin, 1998 Zbl0922.47001
- Enflo P., Hõim T., Some results on extremal vectors and invariant subspaces, Proc. Amer. Math. Soc., 2003, 131, 379–387 Zbl1043.47007
- Fabian M., Halala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V., Functional analysis and infinite geometry, CMS Books in Mathematics, Springer-Verlag, New-York, 2001 Zbl0981.46001
- Flattot A., Hyperinvariant subspaces for Bishop-type operators, Acta Sci. Math. (Szeged), 2008, 74, 689–718 Zbl1210.47020
- Fulton W., Algebraic topology, Springer–Verlag, New York, 1995 Zbl0852.55001
- Gallardo-Gutiérrez E.A., Gorkin P., Minimal invariant subspaces for composition operators, J. Math. Pures Appl. (9), 2011, 95, 245–259 [Crossref] Zbl1213.47007
- Gowers W.T., Maurey B., Banach spaces with small spaces of operators, Math. Ann., 1997, 307, 543–568 Zbl0876.46006
- Grünbaum B., Convex polytopes, 2nd edition, Graduate Texts in Mathematics, 221, Springer–Verlag, New York, 2003 Zbl1033.52001
- James R.C., A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A., 1951, 37, 174–177 Zbl0042.36102
- Kim H.J., Hyperinvariant subspaces for operators having a normal part, Oper. Matrices, 2011, 5, 487–494 Zbl1238.47005
- Kumar R., Partington J.R., Weighted composition operators on Hardy and Bergman spaces, Recent advances in operator theory, operator algebras, and their applications, 157–167, Oper. Theory Adv. Appl., 153, Birkhäuser, Basel, 2005 Zbl1081.47030
- Lindenstrauss J., Tzafriri L., Classical Banach spaces. I, Springer-Verlag, Berlin, 1977 Zbl0362.46013
- Littlewood J.E., On inequalities in the theory of functions, Proc. London Math. Soc. (2), 1925, 23, 481–519 Zbl51.0247.03
- Lomonosov V.I., Invariant subspaces for operators commuting with compact operators, Funct. Anal. Appl., 1973, 7, 213–214 Zbl0293.47003
- MacDonald G.W., Invariant subspaces for Bishop-type operators, J. Funct. Anal., 1990, 91, 287–311 Zbl0727.47002
- Maslyuchenko V., Plichko A., Quasireflexive locally convex spaces without Banach subspaces, Teor. Funktsiˇı Funktsional. Anal. i Prilozhen., 1985, 44, 78–84 (in Russian), translation in J. Soviet Math., 1990, 48, 307–312 Zbl0582.46005
- Matache V., On the minimal invariant subspaces of the hyperbolic composition operator, Proc. Amer. Math. Soc., 1993, 119, 837–841 Zbl0799.47015
- Milman V.D., Operators of class C0 and C0*, Teor. Funktsiˇı Funkcional. Anal. i Priložen., 1970, 10, 15–26
- Mortini R., Cyclic subspaces and eigenvectors of the hyperbolic composition operator, Travaux mathématiques, Fasc. VII, 69–79, Sém. Math. Luxembourg, Centre Univ. Luxembourg, Luxembourg, 1995 Zbl0841.46015
- Nordgren E., Rosenthal P., Wintrobe F.S., Invertible composition operators on Hp, J. Funct. Anal., 1987, 73, 324–344 Zbl0643.47034
- Partington J.R., Pozzi E., Universal shifts and composition operators, Oper. Matrices, 2011, 5, 455–467 Zbl1244.47007
- Pisier G., A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc., 1997, 10, 351–369 [Crossref] Zbl0869.47014
- Plichko A., Superstrictly singular and superstrictly cosingular operators, Functional analysis and its applications, 2004, North-Holland Math. Stud., 197, Elsevier, Amsterdam, 239–255 Zbl1124.46006
- Popov A.I., Schreier singular operators, Houston J. Math., 2009, 35, 209–222 Zbl1222.46013
- Pozzi E., Universality of weighted composition operators on L2([0, 1]) and Sobolev spaces, Acta Sci. Math. (Szeged), (to appear) Zbl1289.47015
- Read C., A solution to the invariant subspace problem, Bull. London Math. Soc., 1984, 16, 337–401 [Crossref] Zbl0566.47003
- Read C., A solution to the invariant subspace problem on the space l1, Bull. London Math. Soc., 1985, 17, 305–317 [Crossref] Zbl0574.47006
- Read C., A short proof concerning the invariant subspace problem, J. London Math. Soc. (2), 1986, 34, 335–348 Zbl0664.47006
- Read C., Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. (2), 1997, 56, 595–606 [Crossref] Zbl0892.47005
- Read C., Strictly singular operators and the invariant subspace problem, Studia Math., 1999, 132, 203–226 Zbl0929.47004
- Singer I., Bases in Banach Spaces I, Springer-Verlag, New York–Berlin, 1970 Zbl0198.16601
- Sari B., Schlumprecht Th., Tomczak-Jaegermann N., Troitsky V.G., On norm closed ideals in L(lp⊗ lq), Studia Math., 2007, 179, 239–262 Zbl1116.47058
- Thomson J.E., Invariant subspaces for algebras of subnormal operators, Proc. Amer. Math. Soc., 1986, 96, 462–464 [Crossref] Zbl0593.47025
- Troitsky V.G., Lomonosov’s theorem cannot be extended to chains of four operators, Proc. Amer. Math. Soc., 2000, 128, 521–525 Zbl0940.47004
- Troitsky V.G., Minimal vectors in arbitrary Banach spaces, Proc. Amer. Math. Soc., 2004, 132, 1177–1180 Zbl1060.47011
- Ziegler G.M., Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1994 Zbl0823.52002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.