Quantum optimal control using the adjoint method

Alfio Borzì

Nanoscale Systems: Mathematical Modeling, Theory and Applications (2012)

  • Volume: 1, page 93-111
  • ISSN: 2299-3290

Abstract

top
Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal control are discussed for finite- and infinitedimensional quantum systems. Some insight is provided considering ’two-level’ models. This work is completed with an outlook to future developments.

How to cite

top

Alfio Borzì. "Quantum optimal control using the adjoint method." Nanoscale Systems: Mathematical Modeling, Theory and Applications 1 (2012): 93-111. <http://eudml.org/doc/266625>.

@article{AlfioBorzì2012,
abstract = {Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal control are discussed for finite- and infinitedimensional quantum systems. Some insight is provided considering ’two-level’ models. This work is completed with an outlook to future developments.},
author = {Alfio Borzì},
journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
keywords = {Quantum systems; Schrödinger equation; Optimal control theory; Numerical optimization; quantum systems; optimal control theory; numerical optimization},
language = {eng},
pages = {93-111},
title = {Quantum optimal control using the adjoint method},
url = {http://eudml.org/doc/266625},
volume = {1},
year = {2012},
}

TY - JOUR
AU - Alfio Borzì
TI - Quantum optimal control using the adjoint method
JO - Nanoscale Systems: Mathematical Modeling, Theory and Applications
PY - 2012
VL - 1
SP - 93
EP - 111
AB - Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal control are discussed for finite- and infinitedimensional quantum systems. Some insight is provided considering ’two-level’ models. This work is completed with an outlook to future developments.
LA - eng
KW - Quantum systems; Schrödinger equation; Optimal control theory; Numerical optimization; quantum systems; optimal control theory; numerical optimization
UR - http://eudml.org/doc/266625
ER -

References

top
  1. C. Altafini, A.M. Bloch, M.R. James, A. Loria, and P. Rouchon, Special Issue on Control of Quantum Mechanical Systems, IEEE Transactions on Automatic Control 57, 1893 (2012). [Crossref] 
  2. M. Annunziato and A. Borzì, Optimal control of probability density functions of stochastic processes, Mathematical Modelling and Analysis 15, 393 (2010). Zbl1216.35154
  3. M. Annunziato and A. Borzì, A Fokker-Planck control framework for multidimensional stochastic processes, Journal of Computational and Applied Mathematics 237, 487 (2013). Zbl1251.35196
  4. M. Annunziato and A. Borzì, A Fokker-Planck-based control of a two-level open quantum system, submitted. Zbl1291.35405
  5. X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys. 4, 729 (2008). 
  6. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses, Science 282, 919 (1998). 
  7. A. Auger, A. Ben Haj Yedder, E. Cances, C. Le Bris, C.M. Dion, A. Keller, and O. Atabek, Optimal laser control of molecular systems: methodology and results, Math. Models Methods Appl. Sci. 12, 1281 (2002). Zbl1017.92050
  8. J.M. Ball, J.E. Marsden, and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Contr. Optim 20, 575 (1982). Zbl0485.93015
  9. W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput. 25, 1674 (2004). Zbl1061.82025
  10. A. Barchielli and M. Gregoratti, Quantum Trajectories and Measurements in Continuous Time, Springer, Berlin, (2009). Zbl1182.81001
  11. K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, Journal of Functional Analysis 232, 328 (2006). Zbl1188.93017
  12. A.M. Bloch, R.W. Brockett, C. Rangan, The Controllability of Infinite Quantum Systems and Closed Subspace Criteria, IEEE Transaction Automatic Control 55, 1897 (2010). 
  13. A. Borzì and U. Hohennester, Multigrid optimization schemes for solving Bose-Einstein condensate control problems, SIAM J. Scientific Computing 30, 441 (2008). Zbl1168.35420
  14. A. Borzì, J. Salomon, and S. Volkwein, Formulation and numerical solution of finite-level quantum optimal control problems, J. Comput. Appl. Math. 216, 170 (2008). [Crossref] Zbl1143.65048
  15. A. Borzì, G. Stadler, and U. Hohenester, Optimal quantum control in nanostructures: Theory and application to a generic three-level system, Phys. Rev. A 66, 053811 (2002). [Crossref] 
  16. U. Boscain, G. Charlot, J.-P. Gauthier, S. Guerin, H.-R. Jauslin, Optimal control in laser-induced population transfer for two- and three-level quantum systems, Journal of Mathematical Physics 43, 2107 (2002). [Crossref] Zbl1059.81195
  17. J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations, American Mathematical Society Colloquium Publications, 46. American Mathematical Society, Providence, RI (1999). Zbl0933.35178
  18. D. Bouwmeester, A. Ekert, and A. Zeilinger, editors. phThe Physics of Quantum Information. Springer, Berlin, (2000). Zbl1008.81504
  19. R. Bücker, J. Grond, S. Manz, T. Berrada, T. Betz, C. Koller, U. Hohenester, T. Schumm, A. Perrin, J. Schmiedmayer, Twin-atom beams, Nature Physics 7, 608 (2011). [Crossref] 
  20. H.P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, (2007). Zbl1223.81001
  21. C. Brif, R. Chakrabarti and H. Rabitz, Control of quantum phenomena: past, present and future, New Journal of Physics 12, 075008 (2010). [Crossref] 
  22. P.W. Brumer and M. Shapiro, Principles of the Quantum Control of Molecular Processes, Wiley-VCH, Berlin, (2003). Zbl1247.81006
  23. J. Burkardt, M. Gunzburger, and J. Peterson, Insensitive functionals, inconsistent gradients, spurious minima, and regularized functionals in flow optimization problems, Int. J. Comput. Fluid Dyn. 16, 171 (2002). [Crossref] Zbl1003.76023
  24. A.G. Butkovskiy and Yu.I. Samoilenko, Control of Quantum-Mechanical Processes and Systems, Kluwer Acad. Publ. (1990). 
  25. A.Z. Capri, Nonrelativistic Quantum Mechanics, World Scientific Publishing Co. Inc., River Edge, NJ, (2002). Zbl1007.81002
  26. A. Castro and I. V. Tokatly, Quantum optimal control theory in the linear response formalism, Phys. Rev. A 84, 033410 (2011). [Crossref] 
  27. T. Chambrion, P. Mason, M. Sigalotti and U. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Annales de l’Institut Henri Poincaré - Non Linear Analysis. Zbl1161.35049
  28. J.-M. Coron, A. Grigoriu, C. Lefter, and G. Turinici, Quantum control design by lyapunov trajectory tracking for dipole and polarizability coupling, New Journal of Physics 11, 105034 (2009). [Crossref] 
  29. P. Crouch and F. Silva Leite, Controllability on classical Lie groups, Mathematics of Control Signals and Systems 1, 31 (1988). Zbl0658.93013
  30. Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient with a strong global convergence property, SIAM J. Opt. 10, 177 (1999). Zbl0957.65061
  31. D. D’Alessandro, Introduction to Quantum Control and Dynamics, Chapman & Hall (2008). 
  32. F. Dalfovo, G. Stefano, L.P. Pitaevskii, S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999). [Crossref] 
  33. E. B. Davies, Quantum theory of open systems, Academic Press, London (1976). Zbl0388.46044
  34. I. Degani and A. Zanna, Optimal Quantum Control by an Adapted Coordinate Ascent Algorithm, SIAM J. Sci. Comput. 34, 1488 (2012). Zbl1251.81051
  35. I. Degani, A. Zanna, L. Saelen and R. Nepstad, Quantum Control With Piecewise Constant Control Functions, SIAM J. Sci. Comput. 31, 3566 (2009). Zbl1198.81120
  36. G. Dirr and U. Helmke, Lie Theory for Quantum Control, GAMM-Mitteilungen 31, 59 (2008). [Crossref] Zbl1197.81199
  37. L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, Rhode Island (2002). 
  38. H.O. Fattorini, Infinite Dimensional Optimization and Control Theory, Encyclopedia of Mathematics and its Applications, vol. 62, Cambridge University Press (1999). Zbl0931.49001
  39. C. Fiolhais, F. Nogueira, and M. Marques (Eds.), A Primer in Density Functional Theory, Lectures Notes in Physics Vol. 620, Springer, Berlin (2003). 
  40. N Gisin and I C Percival, The quantum-state diffusion model applied to open systems, J. Phys. A: Math. Gen. 25, 5677 (1992). [Crossref] Zbl0773.65100
  41. V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, Completely positive semigroups of N-level systems, J. Math. Phys. 17, 821 (1976). [Crossref] 
  42. W.W. Hager and H. Zhang, A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search, SIAM Journal on Optimization 16, 170 (2005). [Crossref] Zbl1093.90085
  43. U. Hohenester, Optical properties of semiconductor nanostructures: Decoherence versus quantum control, in M. Rieth and W. Schommers, (Eds.), Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers (2005). 
  44. U. Hohenester, P.-K. Rekdal, A. Borzì, J. Schmiedmayer, Optimal quantum control of Bose Einstein condensates in magnetic microtraps, Phys. Rev. A 75, 023602 (2007). [Crossref] 
  45. G. M. Huang, T. J. Tarn, and J. W. Clark, On the controllability of quantummechanical systems, J. Math. Phys. 24, 2608 (1983). [Crossref] 
  46. R. Illner, H. Lange, and H. Teismann, Limitations on the control of Schrödinger equations, ESAIM: COCV 12, 615 (2006). Zbl1162.93316
  47. W. Karwowski and R.V. Mendes, Quantum control in infinite dimensions, Phys. Lett. A 322, 282 (2004). [Crossref] Zbl1118.81378
  48. N. Khaneja, R. W. Brockett, and S. J. Glaser, Time Optimal Control in Spin Systems, Phys. Rev. A 63, 032308 (2001). [Crossref] 
  49. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, Journal of Magnetic Resonance 172, 296 (2005). [Crossref] 
  50. K. Kime, Simultaneous control of a rod equation and a simple Schrodinger equation, Systems and Control Letters 24, 301 (1995). Zbl0877.93003
  51. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). [Crossref] 
  52. K. Kormann, S. Holmgren and H. O. Karlsson, A Fourier-Coefficient Based Solution of an Optimal Control Problem in Quantum Chemistry, JOTA 147, 491 (2010). Zbl1218.49034
  53. I. Lesanovsky, T. Schumm, S. Hofferberth, L.M. Andersson, P. Krüger, and J. Schmiedmayer, Adiabatic radiofrequency potentials for the coherent manipulation of matter waves, Phys. Rev. A 73, 033619 (2006). [Crossref] 
  54. C. Lan, T.-J. Tarn, Q.-S. Chi, and J. W. Clark, Analytic controllability of time-dependent quantum control systems, J. Math. Phys. 46, 052102 (2005). [Crossref] Zbl1110.93008
  55. H. Lan and Y. Ding, Ordering, positioning and uniformity of quantum dot arrays, Nano Today 7, 94 (2012) . [Crossref] 
  56. P. Laurent, H. Rabitz, J. Salomon, and G. Turinici, Control through operators for quantum chemistry, Proceedings of the 51st IEEE Conference on Decision and Control, Maui (2012). 
  57. G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976). [Crossref] Zbl0343.47031
  58. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin (1971). 
  59. J.L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review (1988). Zbl0644.49028
  60. Y. Maday, J. Salomon and G. Turinici, Monotonic time-discretized schemes in quantum control, Num. Math. 103, 323 (2006). Zbl1095.65058
  61. Y. Maday and G. Turinici, New formulations of monotonically convergent quantum control algorithms, J. Chem. Phys. 118, 8191 (2003). [Crossref] 
  62. Y. Maday, J. Salomon, and G. Turinici, Parareal in time control for quantum systems, SIAM J. Num. Anal. 45, 2468 (2007). Zbl1153.49005
  63. R. Melnik, Multiple scales and coupled effects in modelling low dimensional semiconductor nanostructures: Between atomistic and continuum worlds, Encyclopedia of Complexity and Systems Science, Editor-in-Chief Meyers, R.A., Springer (2009). 
  64. A.P. Peirce, M.A. Dahleh, and H. Rabitz, Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications, Phys. Rev. A 37, 4950 (1988). [PubMed][Crossref] 
  65. H. Rabitz, G. Turinici, and E. Brown, Control of Molecular Motion: Concepts, Procedures, and Future Prospects, Ch. 14 in Handbook of Numerical Analysis, Volume X, P. Ciarlet and J. Lions, Eds., Elsevier, Amsterdam (2003). Zbl1066.81015
  66. H. Rabitz, M. Hsieh, and C. Rosenthal, Quantum optimally controlled transition landscapes, Science 303, 998 (2004). 
  67. V. Ramakrishna, H. Rabitz, M.V. Salapaka, M. Dahleh and A. Peirce, Controllability of Molecular Systems, Phys. Rev. A 62, 960 (1995). [Crossref] 
  68. E. Räsänen, A. Castro, J. Werschnik, A. Rubio, and E.K.U. Gross, Optimal Control of Quantum Rings by Terahertz Laser Pulses, Phys. Rev. Lett. 98, 157404 (2007). [PubMed][Crossref] 
  69. H. Risken, The Fokker Planck Equation: Methods of Solution and Applications, Springer. Zbl0546.60084
  70. Y. Saad, J.R. Chelikowsky, and S.M. Shontz, Numerical methods for electronic structure calculations of materials, SIAM Review 52, 3 (2010). [Crossref] Zbl1185.82004
  71. A. Sacchetti, Nonlinear time-dependent one-dimensional Schrodinger equation with double-well potential, SIAM J. Math. Anal. 35, 1160 (2004). Zbl1061.35138
  72. S.G. Schirmer, H. Fu, and A. Solomon, Complete controllability of quantum systems, Phys. Rev. A 63, 063410 (2001). [Crossref] Zbl0979.93010
  73. B.J. Sussman, D. Townsend, M.Y. Ivanov, and A. Stolow, Dynamic Stark control of photochemical processes, Science 13, 278 (2006). [Crossref] 
  74. G. Turinici, Controllable quantities for bilinear quantum systems, Proceedings of the 39th IEEE Conference on Decision and Control, 1364 (2000). 
  75. G. Turinici and H. Rabitz, Wavefunction controllability in quantum systems, Journal of Physics A 36, 2565 (2003). Zbl1064.81558
  76. A. van den Bos, Complex Gradient and Hessian, IEEE Proc.-Vis. Image Signal Processing 141, 380 (1994). 
  77. R. Vilela Mendes, Universal families and quantum control in infinite dimensions, Phys. Lett. A 373, 2529 (2009). 
  78. R. Vilela Mendes and V. I. Man’ko, Quantum control and the Strocchi map, Phys. Rev. A 67, 053404 (2003). [Crossref] 
  79. R. Vilela Mendes and V. I. Man’ko, On the problem of quantum control in infinite dimensions, J. Phys. A: Math. Theor. 44, 135302 (2011). [Crossref] 
  80. G. von Winckel and A. Borzì, Computational techniques for a quantum control problem with H1-cost, Inverse Problems 24, 034007 (2008). 
  81. G. von Winckel and A. Borzì, QUCON: A fast Krylov-Newton code for dipole quantum control problems, Computer Physics Communications, 181, 2158 (2010). Zbl1219.81122
  82. G. von Winckel, A. Borzì, and S. Volkwein, A globalized Newton method for the accurate solution of a dipole quantum control problem, SIAM J. Sci. Comput. 31, 4176 (2009). Zbl1206.35211
  83. H. M. Wiseman and G. J. Milburn, Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere, Phys. Rev. A 47, 1652 (1993). [PubMed][Crossref] 
  84. R. Wu, A. Pechen, C. Brif, and H. Rabitz, Controllability of open quantum systems with Kraus-map dynamics, J. Phys. A: Math. Theor. 40, 5681 (2007). [Crossref] Zbl1113.81013
  85. H. Yserentant, Regularity and Approximability of Electronic Wave Functions, Lecture Notes, Berlin, (2009). Zbl1204.35003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.