Limitations on the control of Schrödinger equations
Reinhard Illner; Horst Lange; Holger Teismann
ESAIM: Control, Optimisation and Calculus of Variations (2006)
- Volume: 12, Issue: 4, page 615-635
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topIllner, Reinhard, Lange, Horst, and Teismann, Holger. "Limitations on the control of Schrödinger equations." ESAIM: Control, Optimisation and Calculus of Variations 12.4 (2006): 615-635. <http://eudml.org/doc/249670>.
@article{Illner2006,
abstract = {
We give the definitions of exact and approximate controllability for
linear and nonlinear Schrödinger equations, review fundamental criteria
for controllability and revisit a classical “No-go” result
for evolution equations due to Ball, Marsden and Slemrod.
In Section 2 we prove corresponding results on non-controllability
for the linear Schrödinger equation and distributed additive control,
and we show that the Hartree equation of quantum chemistry with bilinear
control $(E(t)\cdot x) u$ is not controllable in finite or infinite time.
Finally, in Section 3, we give criteria for additive controllability
of linear Schrödinger equations, and
we give a distributed additive controllability result for the
nonlinear Schrödinger equation if the data are small.
},
author = {Illner, Reinhard, Lange, Horst, Teismann, Holger},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Schrödinger equations; exact and approximate control;
quantum control.; quantum control},
language = {eng},
month = {10},
number = {4},
pages = {615-635},
publisher = {EDP Sciences},
title = {Limitations on the control of Schrödinger equations},
url = {http://eudml.org/doc/249670},
volume = {12},
year = {2006},
}
TY - JOUR
AU - Illner, Reinhard
AU - Lange, Horst
AU - Teismann, Holger
TI - Limitations on the control of Schrödinger equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2006/10//
PB - EDP Sciences
VL - 12
IS - 4
SP - 615
EP - 635
AB -
We give the definitions of exact and approximate controllability for
linear and nonlinear Schrödinger equations, review fundamental criteria
for controllability and revisit a classical “No-go” result
for evolution equations due to Ball, Marsden and Slemrod.
In Section 2 we prove corresponding results on non-controllability
for the linear Schrödinger equation and distributed additive control,
and we show that the Hartree equation of quantum chemistry with bilinear
control $(E(t)\cdot x) u$ is not controllable in finite or infinite time.
Finally, in Section 3, we give criteria for additive controllability
of linear Schrödinger equations, and
we give a distributed additive controllability result for the
nonlinear Schrödinger equation if the data are small.
LA - eng
KW - Schrödinger equations; exact and approximate control;
quantum control.; quantum control
UR - http://eudml.org/doc/249670
ER -
References
top- F.Kh. Abdullaev and J. Garnier, Collective oscillations of one-dimensional Bose-Einstein gas under varying in time trap potential and atomic scattering length. Phys. Rev. A70 (2004) 053604.
- G. Bachman and N. Narici, Functional Analysis. Academic Press, N.Y. (1966).
- J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Contr. Opt.20 (1982) 575-597.
- C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Contr. Opt.30 (1992) 1024-1065.
- L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics. Portugaliae Mat. (To appear).
- L. Baudouin, Existence and regularity of the solution of a time dependent Hartree-Fock equation coupled with a classical nuclear dynamics. Rev. Mat. Complut.18 (2005) 285-314.
- L. Baudouin and J.-P. Puel, Bilinear optimal control problem on a Schrödinger equation with singular potentials. Preprint (2004).
- K. Beauchard, Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl.84 (2005) 851-956.
- K. Beauchard and J.M. Coron, Controllability of a quantum particle in a moving potential well. J. Funct. Anal.232 (2006) 328-389.
- P.W. Brumer and M. Shapiro, Principles of the Quantum Control of Molecular Processes. Wiley-VCH, Berlin (2003).
- R. Carles, Linear vs. nonlinear effects for nonlinear Schrödinger equations with potential. Commun. Contemp. Math.7(4) (2005) 483-508.
- E. Cancès and C. LeBris, On the time-dependent Hartree-Fock equations coupled with classical nuclear dynamics. Math. Mod. Meth. Appl. Sci.9 (1999) 963-990.
- E. Cancès, C. LeBris and M. Pilot, Contrôle optimale bilinéaire d'une équation de Schrödinger. C. R. Acad. Sci. Paris, Sér. 1330 (2000) 567-571.
- J.W. Clark, D.G. Lucarelli and T.J. Tarn, Control of quantum systems. Int. J. Mod. Phys. B17 (2003) 5397-5412.
- C. Fabre, Résultats de contrôlabilité exacte interne pour l'équation de Schrödinger at leurs limites asymptotiques, Application à certaines équations de plaques vibrantes. Asymptotic Analysis5 (1992) 343-379.
- H. Helson, Harmonic Analysis. Addison-Wesley, Reading (1983).
- M. Holthaus and S. Stenholm, Coherent control of self-trapping transition. Eur. Phys. J. B20 (2001) 451-467.
- G.M Huang, Tarn T.J and J.W. Clark, On the controllability of quantum-mechanical systems. J. Math. Phys.24 (1983) 2608-2618.
- H. Husimi, Miscellanea in elementary quantum mechanics II. Prog. Theor. Phys.9 (1953) 381-402.
- R. Illner, H. Lange and H. Teismann, A note on the exact internal control of nonlinear Schrödinger equations. CRM Proc. Lecture Notes33 (2003) 127-137.
- A.E. Ingham, Some trigonometric inequalities with applications to the theory of series. Math. Z.41 (1936) 367.
- J.L. Journé, A. Soffer and C.D. Sogge, Decay estimates for Schrödinger operators. Commun. Pure Appl. Math.44 (1991) 573-604.
- K.H. Kerner, Note on the forced and damped oscillator in quantum mechanics. Can. J. Phys.36 (1958) 371-377.
- C. Lan, T.J. Tarn, Q.-S. Chi and J.W. Clark, Analytic controllability of time-dependent quantum control systems. J. Math. Phys.46 (2005) 052102
- I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls. Differ. Int. Equ.5 (1992) 571-535.
- I. Lasiecka and R. Triggiani, Control theory for partial differential equations, continuous and approximation theories. I & II. Cambridge University Press, Cambridge (2000).
- I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. -estimates. J. Inverse Ill-Posed Probl.12 (2004) 43-123.
- I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. II. -estimates. J. Inverse Ill-Posed Probl.12 (2004) 183-231.
- G. Lebeau, Contrôle de l'équation de Schrödinger. Jour. Math. Pures Appl.71 (1992) 267-291.
- C. LeBris, Control theory applied to quantum chemistry, some tracks, in Conf. Int. contrôle des systèmes gouvernés par des équations aux derivées partielles. ESAIM Proc.8 (2000) 77-94.
- C. LeBris, Computational Chemistry, in Handbook of Numerical Analysis, C. LeBris, Ph.G. Ciarlet Eds. North-Holland, Amsterdam (2003).
- J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1 & 2. Masson, Paris (1988).
- E. Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Contr. Opt. 32 (1994) 24-34.
- E. Machtyngier and E. Zuazua, Stabilization of the Schrödinger equation. Portugaliae Mat.51 (1994) 243-256.
- M. Mirrahimi and P. Rouchon, Controllability of quantum harmonic oscillators. IEEE Trans. Automatic Control49 (2004) 745-747.
- K.-D. Phung, Observability and control of Schrödinger equations. SIAM J. Contr. Opt.40 (2001) 211-230.
- S.A. Rice and M. Zhao, Optical Control of Molecular Dynamics. John Wiley & Sons, New York (2000).
- D.L. Russell, Controllability and stabilizability theory for linear partial differential equations, recent progress and open questions. SIAM Rev. (1978) 20 639-739.
- S.G. Schirmer, J.V. Leahy and A.I. Solomon, Degrees of controllability for quantum systems and application to atomic systems. J. Phys. A35 (2002) 4125-4141.
- A.P. Shustov, Coherent states and energy spectrum of the anharmonic osciallator. J. Phys. A11 (1978) 1771-1780.
- E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1974).
- G. Turinici, Analyse de méthodes numériques de simulation et contrôle en chimie quantique. Ph.D. Thesis, Univ. Paris VI (2000).
- G. Turinici, Controllable quantities for bilinear quantum systems, in Proc. of the 39th IEEE Conference on Decision and Control, Sydney, Australia (2000) 1364-1369.
- R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980).
- J. Zabczyk, Introduction to Control Theory. Birkhäuser, Basel (1994).
- E. Zuazua, Remarks on the controllability of the Schrödinger equation. CRM Proc. Lecture Notes33 (2003) 193-211.
Citations in EuDML Documents
top- Mariano De Leo, Constanza Sánchez Fernández de la Vega, Diego Rial, Controllability of Schrödinger equation with a nonlocal term
- Alfio Borzì, Quantum optimal control using the adjoint method
- Karine Beauchard, Controllability of a quantum particle in a 1D variable domain
- Karine Beauchard, Controllablity of a quantum particle in a 1D variable domain
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.