An Overview of the Proof of the Splitting Theorem in Spaces with Non-Negative Ricci Curvature

Nicola Gigli

Analysis and Geometry in Metric Spaces (2014)

  • Volume: 2, Issue: 1, page 169-213, electronic only
  • ISSN: 2299-3274

How to cite

top

Nicola Gigli. "An Overview of the Proof of the Splitting Theorem in Spaces with Non-Negative Ricci Curvature." Analysis and Geometry in Metric Spaces 2.1 (2014): 169-213, electronic only. <http://eudml.org/doc/266707>.

@article{NicolaGigli2014,
author = {Nicola Gigli},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Sobolev spaces; measure valued Laplacian; optimal transport; condition; Busemann function; Bakry-Émery contraction; Dirichlet energy},
language = {eng},
number = {1},
pages = {169-213, electronic only},
title = {An Overview of the Proof of the Splitting Theorem in Spaces with Non-Negative Ricci Curvature},
url = {http://eudml.org/doc/266707},
volume = {2},
year = {2014},
}

TY - JOUR
AU - Nicola Gigli
TI - An Overview of the Proof of the Splitting Theorem in Spaces with Non-Negative Ricci Curvature
JO - Analysis and Geometry in Metric Spaces
PY - 2014
VL - 2
IS - 1
SP - 169
EP - 213, electronic only
LA - eng
KW - Sobolev spaces; measure valued Laplacian; optimal transport; condition; Busemann function; Bakry-Émery contraction; Dirichlet energy
UR - http://eudml.org/doc/266707
ER -

References

top
  1. [1] U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc., 3 (1990), pp. 355-374.[Crossref] Zbl0704.53032
  2. [2] L. Ambrosio and N. Gigli, A user’s guide to optimal transport. Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, Vol. 2062, Springer, 2011. 
  3. [3] L. Ambrosio, N. Gigli, A. Mondino, and T. Rajala, Riemannian ricci curvature lower bounds in metric measure spaces with ff-ffnite measure. Preprint, arXiv:1207.4924, 2011. Zbl1317.53060
  4. [4] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, second ed., 2008. Zbl1145.35001
  5. [5] , Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Accepted by Revista Matemática Iberoamericana, arXiv:1111.3730, 2011. 
  6. [6] , Metric measure spaces with riemannian Ricci curvature bounded from below. Preprint, arXiv:1109.0222, 2011. 
  7. [7] , Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Preprint, arXiv:1209.5786, 2012. 
  8. [8] L. Ambrosio, N. Gigli, and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below, Inventiones mathematicae, (2013), pp. 1-103. 
  9. [9] L. Ambrosio, A. Mondino, and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces. Preprint, 2013. Zbl1335.35088
  10. [10] K. Bacher and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259 (2010), pp. 28-56. Zbl1196.53027
  11. [11] A. Björn and J. Björn, Nonlinear potential theory on metric spaces, vol. 17 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, 2011. Zbl1231.31001
  12. [12] F. Cavalletti and K.-T. Sturm, Local curvature-dimension condition implies measure-contraction property, J. Funct. Anal., 262 (2012), pp. 5110-5127. Zbl1244.53050
  13. [13] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), pp. 428-517.[Crossref] Zbl0942.58018
  14. [14] J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2), 144 (1996), pp. 189-237. Zbl0865.53037
  15. [15] , On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), pp. 406-480. Zbl0902.53034
  16. [16] , On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom., 54 (2000), pp. 13-35. Zbl1027.53042
  17. [17] , On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom., 54 (2000), pp. 37-74. Zbl1027.53043
  18. [18] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, 6 (1971/72), pp. 119-128. Zbl0223.53033
  19. [19] D. L. Cohn, Measure theory, Birkhäuser Boston Inc., Boston, MA, 1993. Reprint of the 1980 original. Zbl0860.28001
  20. [20] M. Erbar, K. Kuwada, and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Preprint, arXiv:1303.4382, 2013. Zbl1329.53059
  21. [21] N. Gigli, On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. PDE, 39 (2010), pp. 101-120. Zbl1200.35178
  22. [22] , On the differential structure of metric measure spaces and applications. Preprint, arXiv:1205.6622, 2012. 
  23. [23] , Optimal maps in non branching spaces with Ricci curvature bounded from below, Geom. Funct. Anal., 22 (2012), pp. 990-999. Zbl1257.53055
  24. [24] , The splitting theorem in non-smooth context. Preprint, arXiv:1302.5555, 2013. 
  25. [25] N. Gigli, K. Kuwada, and S.-i. Ohta, Heat flow on Alexandrov spaces, Communications on Pure and Applied Mathematics, 66 (2013), pp. 307-331. Zbl1267.58014
  26. [26] N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces. Accepted at JMPA, arXiv:1209.3796, 2012. Zbl1283.31002
  27. [27] N. Gigli, A. Mondino, and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications. Preprint, 2013. Zbl06522136
  28. [28] N. Gigli and S. Mosconi, The Abresch-Gromoll inequality in a non-smooth setting. Accepted at DCDS-A, arXiv:1209.3813, 2012. 
  29. [29] N. Gigli, T. Rajala, and K.-T. Sturm, Optimal maps and exponentiation on ffnite dimensional spaces with Ricci curvature bounded from below. Preprint, 2013. 
  30. [30] A. Grigor0yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.), 36 (1999), pp. 135-249.[Crossref] 
  31. [31] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. Zbl0985.46008
  32. [32] , Nonsmooth calculus, Bull. Amer. Math. Soc. (N.S.), 44 (2007), pp. 163-232. 
  33. [33] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1-17. Zbl0915.35120
  34. [34] B. Kleiner and J. Mackay, Differentiable structure on metric measure spaces: a primer. Preprint, arXiv:1108.1324, 2011. Zbl06586482
  35. [35] K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258 (2010), pp. 3758-3774. Zbl1194.53032
  36. [36] J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J. Funct. Anal., 245 (2007), pp. 311-333. Zbl1119.53028
  37. [37] , Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), pp. 903-991. Zbl1178.53038
  38. [38] S.-i. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, 36 (2009), pp. 211-249. 
  39. [39] S.-i. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math., 62 (2009), pp. 1386-1433. Zbl1176.58012
  40. [40] , Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal., 204 (2012), pp. 917-944. Zbl1257.53098
  41. [41] Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom., 39 (1994), pp. 629-658. Zbl0808.53061
  42. [42] G. Perelman, Dc structure on Alexandrov Space. Unpublished preprint, available online at http://www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf. 
  43. [43] A. Petrunin, Alexandrov meets Lott-Villani-Sturm, Münster J. Math., 4 (2011), pp. 53-64. Zbl1247.53038
  44. [44] T. Rajala, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm, J. Funct. Anal., 263 (2012), pp. 896-924. Zbl1260.53076
  45. [45] , Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 44 (2012), pp. 477-494. [46] T. Rajala and K.-T. Sturm, Non-branching geodesics and optimalmaps in strong CD(K,1)-spaces. Preprint, arXiv:1207.6754, 2012. Zbl1250.53040
  46. [47] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), pp. 243-279. Zbl0974.46038
  47. [48] K.-T. Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties, J. Reine Angew. Math., 456 (1994), pp. 173-196. Zbl0806.53041
  48. [49] , Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), 75 (1996), pp. 273-297. Zbl0854.35016
  49. [50] , On the geometry of metric measure spaces. I, Acta Math., 196 (2006), pp. 65-131. 
  50. [51] , On the geometry of metric measure spaces. II, Acta Math., 196 (2006), pp. 133-177. 
  51. [52] C. Villani, Optimal transport. Old and new, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009. 
  52. [53] N. Weaver, Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal., 178 (2000), pp. 64-112. Zbl0979.46035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.