### A contribution to the Cartan's method of specialization of frames

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We show that all finite-dimensional resolvable generalized manifolds with the piecewise disjoint arc-disk property are codimension one manifold factors. We then show how the piecewise disjoint arc-disk property and other general position properties that detect codimension one manifold factors are related. We also note that in every example presently known to the authors of a codimension one manifold factor of dimension n ≥ 4 determined by general position properties, the piecewise disjoint arc-disk...

In spaces of nonpositive curvature the existence of isometrically embedded flat (hyper)planes is often granted by apparently weaker conditions on large scales.We show that some such results remain valid for metric spaces with non-unique geodesic segments under suitable convexity assumptions on the distance function along distinguished geodesics. The discussion includes, among other things, the Flat Torus Theorem and Gromov’s hyperbolicity criterion referring to embedded planes. This generalizes...

In a recent paper [17] we studied asymmetric metric spaces; in this context we studied the length of paths, introduced the class of run-continuous paths; and noted that there are different definitions of “length spaces” (also known as “path-metric spaces” or “intrinsic spaces”). In this paper we continue the analysis of asymmetric metric spaces.We propose possible definitions of completeness and (local) compactness.We define the geodesics using as admissible paths the class of run-continuous paths.We...

We consider the Hausdorff metric on the space of compact convex subsets of a proper, geodesically complete metric space of globally non-positive Busemann curvature in which geodesics do not split, and characterize their surjective isometries. Moreover, an analogous characterization of the surjective isometries of the space of compact subsets of a proper, uniquely geodesic, geodesically complete metric space in which geodesics do not split is given.

In this paper the length of a curve on a Lipschitz Riemannian manifold is defined. It is shown that the above definition is consistent with the definition of the geodesic distance already introduced by the authors, both in a geometrical and analytical way.

In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the...