# Signals generated in memristive circuits

Nanoscale Systems: Mathematical Modeling, Theory and Applications (2012)

- Volume: 1, page 48-57
- ISSN: 2299-3290

## Access Full Article

top## Abstract

top## How to cite

topArtur Sowa. "Signals generated in memristive circuits." Nanoscale Systems: Mathematical Modeling, Theory and Applications 1 (2012): 48-57. <http://eudml.org/doc/266711>.

@article{ArturSowa2012,

abstract = {Signals generated in circuits that include nano-structured elements typically have strongly distinct characteristics, particularly the hysteretic distortion. This is due to memristance, which is one of the key electronic properties of nanostructured materials. In this article, we consider signals generated from a memrsitive circuit model. We demonstrate numerically that such signals can be efficiently represented in certain custom-designed nonorthogonal bases. The proposed method ensures that the actual numerical representation can be implemented as a fast, O(N logN), algorithm. In addition, we discuss the possibility of modelling the hysteretic distortion via fast numerical transforms.},

author = {Artur Sowa},

journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},

keywords = {Memristance; nanoelectronics; fast algorithms; nonlinear eigenvalue problems; memristance},

language = {eng},

pages = {48-57},

title = {Signals generated in memristive circuits},

url = {http://eudml.org/doc/266711},

volume = {1},

year = {2012},

}

TY - JOUR

AU - Artur Sowa

TI - Signals generated in memristive circuits

JO - Nanoscale Systems: Mathematical Modeling, Theory and Applications

PY - 2012

VL - 1

SP - 48

EP - 57

AB - Signals generated in circuits that include nano-structured elements typically have strongly distinct characteristics, particularly the hysteretic distortion. This is due to memristance, which is one of the key electronic properties of nanostructured materials. In this article, we consider signals generated from a memrsitive circuit model. We demonstrate numerically that such signals can be efficiently represented in certain custom-designed nonorthogonal bases. The proposed method ensures that the actual numerical representation can be implemented as a fast, O(N logN), algorithm. In addition, we discuss the possibility of modelling the hysteretic distortion via fast numerical transforms.

LA - eng

KW - Memristance; nanoelectronics; fast algorithms; nonlinear eigenvalue problems; memristance

UR - http://eudml.org/doc/266711

ER -

## References

top- F. Alibart, L. Gao, B.D. Hoskins, D. B. Strukov. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology, 23, 075201 (7pp) (2012). [PubMed][Crossref][WoS]
- A. Beurling. The Collected Works of Arno Beurling, Vol. 2: Harmonic Analysis, Contemp. Math., Birkhäuser, Boston, 378–380 (1989).
- K. Chandrasekharan. Arithmetical Functions, Springer-Verlag, New York, Heidelberg, Berlin (1970). Zbl0217.31602
- L.O. Chua. Memristor - the missing circuit element. IEEE Trans. Circuit Theory, 18, 507–519 (1971).
- L. O. Chua and S. M. Kang. Memristive Devices and Systems. Proceedings of the IEEE, 64, 209-223 (1976). [Crossref]
- G.Z. Cohen, Y.V. Pershin, and M. Di Ventura. Second and higher harmonics generation with memristive circuits. Appl. Phys. Let. 100, 133109 (2012).
- S. Datta. Nanoscale device modeling: the Green’s function method. Superlattices and Microstructures, 28, 253–278 (2000). [Crossref]
- B. Dziurla, R. Newcomb. The Drazin inverse and semi-state equations. In: P. Dewilde (ed.). Proceedings of the International Symposium on Mathematical Theory of Networks and Systems. Delft, Netherlands, pp. 283–289 (1979). Zbl0499.94035
- H. Hedenmalm, P. Lindqvist, and K. Seip. A Hilbert Space of Dirichlet Series and Systems of Dialated Functions in L2(0; 1). Duke Math. J., 86, 1–37 (1997). [Crossref] Zbl0887.46008
- M. Itoh, L.O. Chua. Memristor oscillators. International Journal of Bifurcation and Chaos, 18, 3183–3206 (2008). [Crossref][WoS] Zbl1165.94300
- T.H. Kim, E.Y. Jang, N.J. Lee, D.J. Choi, K.-J. Lee, J.T. Jang, et. al. Nanoparticle Assemblies as Memristors. Nano Lett., 9, 2229–2233 (2009). [WoS]
- F. Maucher, S. Skupin and W. Krolikowski. Collapse in the nonlocal nonlinear Schrödinger equation. Nonlinearity, 24, 1987–2001 (2011). [Crossref][WoS] Zbl1219.35285
- R.V.N. Melnik, B. Lassen, L.C. Lew Yan Voon, M. Willatzen, C. Galeriu. Acccounting for Nonlinearities in Mathematical Modelling of Quantum Dot Structures. Discrete and Contin. Dyn. Syst., suppl., 642–651 (2005). Zbl1156.35452
- M. Miranda. The Threat of Semiconductor Variability. IEEE Spectrum, July 2012
- R.W. Newcomb. The semistate description of nonlinear time-variable circuits. IEEE Transactions on Circuits and Systems, 28, 62–71 (1981). [Crossref]
- M. Paulsson, F. Zahid, S. Datta. Resistance of a molecule. In: W.A. Goddart III et al. (editors), Handbook of Nanoscience, Engineering, and Technology, CRC Press (2003).
- T. Prodromakis and C. Toumazou. A Review on Memristive Devices and Applications. IEEE Conference Proceedings: Electronics, Circuits and Systems (ICECS), 2010 17th International Conference on, 12-15 Dec 2010, 934–937.
- R. Riaza and C. Tischendorf. Semistate models of electrical circuits including memristors. Int. J. of Circ. Theor. Appl., 39, 607–627 (2011). [Crossref] Zbl1319.94117
- R. Riaza and C. Tischendorf. Structural characterization of classical and memristive circuits with purely imaginary eigenvalues. Int. J. of Circ. Theor. Appl., (2011). Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/cta.798 [Crossref]
- D. Shoenberg. Magnetic Oscillations in Metals, Cambridge University Press, Cambridge (1984), (new edition 2009)
- G. Snider, R. Amerson, D. Carter, H. Abdalla, and M. Sh. Qureshi. From Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain. Computer (Published by the IEEE Computer Society), 44 (2), 21–28 (2011). [Crossref]
- A. Sowa. Spectra of nonlocally bound quantum systems. Russ. J. Math. Phys., 18, 227–241, (2011). Zbl1254.81038
- A. Sowa. On an eigenvalue problem with a reciprocal–linear term. Waves in Random and Complex Media, 22, 186–206 (2012). Zbl1291.34141
- A. Sowa. A fast-transform basis with hysteretic features. IEEE Conference Proceedings: Electrical and Computer Engineering (CCECE), 2011 24th Canadian Conference on, 8-11 May 2011, 253-257.
- A. Sowa. Factorizing matrices by Dirichlet multiplication. Lin. Alg. Appl., to appear Zbl1263.15013
- A. Sowa. The Dirichlet ring and unconditional bases in L2[0; 2Π]. (submitted) [WoS]
- A. Sowa. Magnetic Oscillations and Maxwell Theory. Phys. Lett. A, 228, 347–350 (1997). [Crossref] Zbl1011.78003
- J.C. Sprott. Elegant Chaos. World Scientific Publishing Co, London (2010). Zbl1222.37005
- D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams. The missing memristor found. Nature Letters, 453, 80–83 (2008).

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.