Small Inductive Dimension of Topological Spaces. Part II
Formalized Mathematics (2009)
- Volume: 17, Issue: 3, page 219-222
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topKarol Pąk. "Small Inductive Dimension of Topological Spaces. Part II." Formalized Mathematics 17.3 (2009): 219-222. <http://eudml.org/doc/266738>.
@article{KarolPąk2009,
abstract = {In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.},
author = {Karol Pąk},
journal = {Formalized Mathematics},
language = {eng},
number = {3},
pages = {219-222},
title = {Small Inductive Dimension of Topological Spaces. Part II},
url = {http://eudml.org/doc/266738},
volume = {17},
year = {2009},
}
TY - JOUR
AU - Karol Pąk
TI - Small Inductive Dimension of Topological Spaces. Part II
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 3
SP - 219
EP - 222
AB - In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.
LA - eng
UR - http://eudml.org/doc/266738
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [6] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.
- [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [10] Ryszard Engelking. Teoria wymiaru. PWN, 1981.
- [11] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
- [12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [14] Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.[Crossref]
- [15] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
- [16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [18] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.