Small Inductive Dimension of Topological Spaces. Part II

Karol Pąk

Formalized Mathematics (2009)

  • Volume: 17, Issue: 3, page 219-222
  • ISSN: 1426-2630

Abstract

top
In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.

How to cite

top

Karol Pąk. "Small Inductive Dimension of Topological Spaces. Part II." Formalized Mathematics 17.3 (2009): 219-222. <http://eudml.org/doc/266738>.

@article{KarolPąk2009,
abstract = {In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.},
author = {Karol Pąk},
journal = {Formalized Mathematics},
language = {eng},
number = {3},
pages = {219-222},
title = {Small Inductive Dimension of Topological Spaces. Part II},
url = {http://eudml.org/doc/266738},
volume = {17},
year = {2009},
}

TY - JOUR
AU - Karol Pąk
TI - Small Inductive Dimension of Topological Spaces. Part II
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 3
SP - 219
EP - 222
AB - In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.
LA - eng
UR - http://eudml.org/doc/266738
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  3. [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990. 
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  5. [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  6. [6] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991. 
  7. [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990. 
  8. [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  9. [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  10. [10] Ryszard Engelking. Teoria wymiaru. PWN, 1981. 
  11. [11] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998. 
  12. [12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990. 
  13. [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  14. [14] Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.[Crossref] 
  15. [15] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991. 
  16. [16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  17. [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  18. [18] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.