Small Inductive Dimension of Topological Spaces
Formalized Mathematics (2009)
- Volume: 17, Issue: 3, page 207-212
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topKarol Pąk. "Small Inductive Dimension of Topological Spaces." Formalized Mathematics 17.3 (2009): 207-212. <http://eudml.org/doc/266803>.
@article{KarolPąk2009,
abstract = {We present the concept and basic properties of the Menger-Urysohn small inductive dimension of topological spaces according to the books [7]. Namely, the paper includes the formalization of main theorems from Sections 1.1 and 1.2.},
author = {Karol Pąk},
journal = {Formalized Mathematics},
language = {eng},
number = {3},
pages = {207-212},
title = {Small Inductive Dimension of Topological Spaces},
url = {http://eudml.org/doc/266803},
volume = {17},
year = {2009},
}
TY - JOUR
AU - Karol Pąk
TI - Small Inductive Dimension of Topological Spaces
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 3
SP - 207
EP - 212
AB - We present the concept and basic properties of the Menger-Urysohn small inductive dimension of topological spaces according to the books [7]. Namely, the paper includes the formalization of main theorems from Sections 1.1 and 1.2.
LA - eng
UR - http://eudml.org/doc/266803
ER -
References
top- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.
- [4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
- [6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [7] Roman Duda. Wprowadzenie do topologii. PWN, 1986. Zbl0636.54001
- [8] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [10] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
- [11] Andrzej Nędzusiak. s-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
- [12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [14] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.[Crossref]
- [15] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
- [16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [17] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
- [18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [20] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.