Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology
Anne Dutfoy; Sylvie Parey; Nicolas Roche
Dependence Modeling (2014)
- Volume: 2, Issue: 1, page 30-48, electronic only
- ISSN: 2300-2298
Access Full Article
topAbstract
topHow to cite
topAnne Dutfoy, Sylvie Parey, and Nicolas Roche. "Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology." Dependence Modeling 2.1 (2014): 30-48, electronic only. <http://eudml.org/doc/266769>.
@article{AnneDutfoy2014,
abstract = {In this paper, we provide a tutorial on multivariate extreme value methods which allows to estimate the risk associated with rare events occurring jointly. We draw particular attention to issues related to extremal dependence and we insist on the asymptotic independence feature. We apply the multivariate extreme value theory on two data sets related to hydrology and meteorology: first, the joint flooding of two rivers, which puts at risk the facilities lying downstream the confluence; then the joint occurrence of high speed wind and low air temperatures, which might affect overhead lines.},
author = {Anne Dutfoy, Sylvie Parey, Nicolas Roche},
journal = {Dependence Modeling},
keywords = {Multivariate extreme value theory; Joint extreme hazards; Asymptotic independence; multivariate extreme value theory; joint extreme hazards; asymptotic independence},
language = {eng},
number = {1},
pages = {30-48, electronic only},
title = {Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology},
url = {http://eudml.org/doc/266769},
volume = {2},
year = {2014},
}
TY - JOUR
AU - Anne Dutfoy
AU - Sylvie Parey
AU - Nicolas Roche
TI - Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology
JO - Dependence Modeling
PY - 2014
VL - 2
IS - 1
SP - 30
EP - 48, electronic only
AB - In this paper, we provide a tutorial on multivariate extreme value methods which allows to estimate the risk associated with rare events occurring jointly. We draw particular attention to issues related to extremal dependence and we insist on the asymptotic independence feature. We apply the multivariate extreme value theory on two data sets related to hydrology and meteorology: first, the joint flooding of two rivers, which puts at risk the facilities lying downstream the confluence; then the joint occurrence of high speed wind and low air temperatures, which might affect overhead lines.
LA - eng
KW - Multivariate extreme value theory; Joint extreme hazards; Asymptotic independence; multivariate extreme value theory; joint extreme hazards; asymptotic independence
UR - http://eudml.org/doc/266769
ER -
References
top- [1] Beirlant, J., Y. Goegebeur, J. Teugels, and J. Segers (2004). Statistics of Extremes, Theory and Applications. John Wiley & Sons, Ltd., Chichester. Zbl1070.62036
- [2] Berman, S. M. (1961/1962). Convergence to bivariate limiting extreme value distributions. Ann. Inst. Statist. Math. 13, 217–223. Zbl0119.15103
- [3] Bruun, J. T. and J. A. Tawn (1998). Comparison of approaches for estimating the probability of coastal flooding. J. R. Stat. Soc. Ser. C Appl. Stat. 47(3), 405–423. Zbl0905.62123
- [4] Buishand, T. (1989). Statistics of extremes in climatology. Statistica Neerlandica 43(1), 1–30. [Crossref] Zbl0668.62085
- [5] Buishand, T. A. (1991). Extreme rainfall estimation by combining data from several sites. Hydrological Sciences Journal 36(4), 345–365. [Crossref]
- [6] Capéraà, P. and A.-L. Fougères (2000). Estimation of a bivariate extreme value distribution. Extremes 3(4), 311–329 (2001). [Crossref] Zbl1008.62053
- [7] Capéraà, P., A.-L. Fougères, and C. Genest (1997). A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84(3), 567–577. [Crossref] Zbl1058.62516
- [8] Carter, D. J. T. and P. G. Challenor (1981). Estimating return values of environmental parameters. Q. J. R. Meteorological Soc. 107(451), 259–266.
- [9] Chebana, F. and T. B. M. J. Ouarda (2011). Multivariate quantiles in hydrological frequency analysis. Environmetrics 22(1), 63–78. [WoS][Crossref]
- [10] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag London, Ltd., London. Zbl0980.62043
- [11] Coles, S. G. and J. A. Tawn (1994). Statistical methods for multivariate extremes: An application to structural design. J. R. Stat. Soc. Ser. C Appl. Stat. 43(1), pp. 1–48. [Crossref] Zbl0825.62717
- [12] Dales, M. Y. and D. W. Reed (2001). Regional flood and storm hazard assessment. Wallingford, Institute of Hydrology.
- [13] de Carvalho, M. and A. Ramos (2012). Bivariate extreme statistics, II. REVSTAT 10(1), 83–107. Zbl1297.60034
- [14] de Haan, L. and J. de Ronde (1998). Sea and wind: multivariate extremes at work. Extremes 1(1), 7–45. [Crossref] Zbl0921.62144
- [15] de Haan, L. and T. T. Pereira (2006). Spatial extremes: models for the stationary case. Ann. Statist. 34(1), 146–168. [Crossref] Zbl1104.60021
- [16] Deheuvels, P. (1991). On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Statist. Probab. Lett. 12(5), 429–439. [Crossref] Zbl0749.62033
- [17] Di Bernardino, E., V. Maume-Deschamps, and C. Prieur (2013). Estimating a bivariate tail: a copula based approach. J. Multivariate Anal. 119, 81–100. [WoS] Zbl06244391
- [18] Dupuis, D. J. and B. L. Jones (2006). Multivariate extreme value theory and its usefulness in understanding risk. N. Am. Actuar. J. 10(4), 1–27.
- [19] Durante, F. and G. Salvadori (2010). On the construction of multivariate extreme value models via copulas. Environmetrics 21(2), 143–161. [WoS]
- [20] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997). Modelling Extremal Events for Insurance and Finance. Berlin: Springer. Zbl0873.62116
- [21] Falk, M. and R. Michel (2006). Testing for tail independence in extreme value models. Ann. Inst. Statist. Math. 58(2), 261–290. [Crossref] Zbl1095.62060
- [22] Galambos, J., J. Lechner, and E. Simiu (Eds.) (1994). Extreme Value Theory and Applications, Dordrecht. Kluwer. Zbl0803.00015
- [23] Genest, C. and L.-P. Rivest (1989). A characterization of Gumbel’s family of extreme value distributions. Statist. Probab. Lett. 8(3), 207–211. [Crossref] Zbl0701.62060
- [24] Gumbel, E. J. (1960). Bivariate exponential distributions. J. Amer. Statist. Assoc. 55, 698–707. [Crossref] Zbl0099.14501
- [25] Hall, P. and N. Tajvidi (2000). Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 6(5), 835–844. [Crossref][WoS] Zbl1067.62540
- [26] Heffernan, J. E. (2000). A directory of coefficients of tail dependence. Extremes 3(3), 279–290. [Crossref] Zbl0979.62040
- [27] Hüsler, J. and D. Li (2009). Testing asymptotic independence in bivariate extremes. J. Statist. Plann. Inference 139(3), 990–998. [Crossref] Zbl1156.62332
- [28] Leadbetter, M. R., G. Lindgren, and H. Rootzén (1983). Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York-Berlin. Zbl0518.60021
- [29] Ledford, A. W. and J. A. Tawn (1996). Statistics for near independence in multivariate extreme values. Biometrika 83(1), 169–187. [Crossref] Zbl0865.62040
- [30] Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. J. Bank. Financ. 24(7), 1097 – 1130. [Crossref]
- [31] Maulik, K., S. Resnick, and H. Rootzén (2002). Asymptotic independence and a network traffic model. J. Appl. Probab. 39(4), 671–699. Zbl1090.90017
- [32] Mole, N., C. W. Anderson, S. Nadarajah, and C. Wright (1995). A generalized pareto distribution model for high concentrations in short-range atmospheric dispersion. Environmetrics 6(6), 595–606. [Crossref]
- [33] Morton, I., J. Bowers, and G. Mould (1997). Estimating return period wave heights and wind speeds using a seasonal point process model. Coastal Engineering 31(1–4), 305 – 326. [Crossref]
- [34] Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer. Second edition. Zbl1152.62030
- [35] Parey, S., T. T. H. Hoang, and D. Dacunha-Castelle (2010). Different ways to compute temperature return levels in the climate change context. Environmetrics 21(7-8), 698–718. [Crossref][WoS]
- [36] Poon, S.-H., M. Rockinger, and J. Tawn (2004). Extreme value dependence in financial markets: Diagnostics, models, and financial implications. Rev. Financ. Stud. 17(2), 581–610.
- [37] Resnick, S. and H. Rootzén (2000). Self-similar communication models and very heavy tails. Ann. Appl. Probab. 10(3), 753–778. Zbl1083.60521
- [38] Rincón, A. (2012). An index for climate change: a multivariate time series approach. Environmetrics 23(7), 617–622. [WoS][Crossref]
- [39] Salvadori, G., C. D. Michele, N. Kottegoda, and R. Rosso (2007). Extremes in Nature - An Approach Using Copulas. New York: Springer.
- [40] Schlather, M. (2001). Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution. Statist. Probab. Lett. 53(3), 325–329. [Crossref] Zbl0982.62052
- [41] Sibuya, M. (1960). Bivariate extreme statistics. I. Ann. Inst. Statist. Math. Tokyo 11, 195–210. Zbl0095.33703
- [42] Starica, C. (1999). Multivariate extremes for models with constant conditional correlations. J. Empir. Financ. 6(5), 515 – 553. [Crossref]
- [43] Tawn, J. A. (1988). Bivariate extreme value theory: models and estimation. Biometrika 75(3), 397–415. [Crossref] Zbl0653.62045
- [44] Tawn, J. A. (1990). Modelling multivariate extreme value distributions. Biometrika 77(2), pp. 245–253. [Crossref][WoS] Zbl0716.62051
- [45] Tsai, Y.-L., D. J. Dupuis, and D. J. Murdoch (2013). A robust test for asymptotic independence of bivariate extremes. Statistics 47(1), 172–183. [WoS][Crossref] Zbl06181134
- [46] Tsai, Y.-L., D. J. Murdoch, and D. J. Dupuis (2011). Influence measures and robust estimators of dependence in multivariate extremes. Extremes 14(4), 343–363. [WoS][Crossref] Zbl1329.62148
- [47] Weller, G. B., D. S. Cooley, and S. R. Sain (2012). An investigation of the pineapple express phenomenon via bivariate extreme value theory. Environmetrics 23(5), 420–439. [Crossref][WoS]
- [48] Zhang, D., M. T. Wells, and L. Peng (2008). Nonparametric estimation of the dependence function for a multivariate extreme value distribution. J. of Multivariate Anal. 99(4), 577 – 588. Zbl1333.62140
- [49] Zhang, Z., Y. Qi, and X. Ma (2011). Asymptotic independence of correlation coefficients with application to testing hypothesis of independence. Electron. J. Statist. 5, 342–372.[Crossref] Zbl1274.62401
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.