Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology

Anne Dutfoy; Sylvie Parey; Nicolas Roche

Dependence Modeling (2014)

  • Volume: 2, Issue: 1, page 30-48, electronic only
  • ISSN: 2300-2298

Abstract

top
In this paper, we provide a tutorial on multivariate extreme value methods which allows to estimate the risk associated with rare events occurring jointly. We draw particular attention to issues related to extremal dependence and we insist on the asymptotic independence feature. We apply the multivariate extreme value theory on two data sets related to hydrology and meteorology: first, the joint flooding of two rivers, which puts at risk the facilities lying downstream the confluence; then the joint occurrence of high speed wind and low air temperatures, which might affect overhead lines.

How to cite

top

Anne Dutfoy, Sylvie Parey, and Nicolas Roche. "Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology." Dependence Modeling 2.1 (2014): 30-48, electronic only. <http://eudml.org/doc/266769>.

@article{AnneDutfoy2014,
abstract = {In this paper, we provide a tutorial on multivariate extreme value methods which allows to estimate the risk associated with rare events occurring jointly. We draw particular attention to issues related to extremal dependence and we insist on the asymptotic independence feature. We apply the multivariate extreme value theory on two data sets related to hydrology and meteorology: first, the joint flooding of two rivers, which puts at risk the facilities lying downstream the confluence; then the joint occurrence of high speed wind and low air temperatures, which might affect overhead lines.},
author = {Anne Dutfoy, Sylvie Parey, Nicolas Roche},
journal = {Dependence Modeling},
keywords = {Multivariate extreme value theory; Joint extreme hazards; Asymptotic independence; multivariate extreme value theory; joint extreme hazards; asymptotic independence},
language = {eng},
number = {1},
pages = {30-48, electronic only},
title = {Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology},
url = {http://eudml.org/doc/266769},
volume = {2},
year = {2014},
}

TY - JOUR
AU - Anne Dutfoy
AU - Sylvie Parey
AU - Nicolas Roche
TI - Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology
JO - Dependence Modeling
PY - 2014
VL - 2
IS - 1
SP - 30
EP - 48, electronic only
AB - In this paper, we provide a tutorial on multivariate extreme value methods which allows to estimate the risk associated with rare events occurring jointly. We draw particular attention to issues related to extremal dependence and we insist on the asymptotic independence feature. We apply the multivariate extreme value theory on two data sets related to hydrology and meteorology: first, the joint flooding of two rivers, which puts at risk the facilities lying downstream the confluence; then the joint occurrence of high speed wind and low air temperatures, which might affect overhead lines.
LA - eng
KW - Multivariate extreme value theory; Joint extreme hazards; Asymptotic independence; multivariate extreme value theory; joint extreme hazards; asymptotic independence
UR - http://eudml.org/doc/266769
ER -

References

top
  1. [1] Beirlant, J., Y. Goegebeur, J. Teugels, and J. Segers (2004). Statistics of Extremes, Theory and Applications. John Wiley & Sons, Ltd., Chichester. Zbl1070.62036
  2. [2] Berman, S. M. (1961/1962). Convergence to bivariate limiting extreme value distributions. Ann. Inst. Statist. Math. 13, 217–223. Zbl0119.15103
  3. [3] Bruun, J. T. and J. A. Tawn (1998). Comparison of approaches for estimating the probability of coastal flooding. J. R. Stat. Soc. Ser. C Appl. Stat. 47(3), 405–423. Zbl0905.62123
  4. [4] Buishand, T. (1989). Statistics of extremes in climatology. Statistica Neerlandica 43(1), 1–30. [Crossref] Zbl0668.62085
  5. [5] Buishand, T. A. (1991). Extreme rainfall estimation by combining data from several sites. Hydrological Sciences Journal 36(4), 345–365. [Crossref] 
  6. [6] Capéraà, P. and A.-L. Fougères (2000). Estimation of a bivariate extreme value distribution. Extremes 3(4), 311–329 (2001). [Crossref] Zbl1008.62053
  7. [7] Capéraà, P., A.-L. Fougères, and C. Genest (1997). A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84(3), 567–577. [Crossref] Zbl1058.62516
  8. [8] Carter, D. J. T. and P. G. Challenor (1981). Estimating return values of environmental parameters. Q. J. R. Meteorological Soc. 107(451), 259–266. 
  9. [9] Chebana, F. and T. B. M. J. Ouarda (2011). Multivariate quantiles in hydrological frequency analysis. Environmetrics 22(1), 63–78. [WoS][Crossref] 
  10. [10] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag London, Ltd., London. Zbl0980.62043
  11. [11] Coles, S. G. and J. A. Tawn (1994). Statistical methods for multivariate extremes: An application to structural design. J. R. Stat. Soc. Ser. C Appl. Stat. 43(1), pp. 1–48. [Crossref] Zbl0825.62717
  12. [12] Dales, M. Y. and D. W. Reed (2001). Regional flood and storm hazard assessment. Wallingford, Institute of Hydrology. 
  13. [13] de Carvalho, M. and A. Ramos (2012). Bivariate extreme statistics, II. REVSTAT 10(1), 83–107. Zbl1297.60034
  14. [14] de Haan, L. and J. de Ronde (1998). Sea and wind: multivariate extremes at work. Extremes 1(1), 7–45. [Crossref] Zbl0921.62144
  15. [15] de Haan, L. and T. T. Pereira (2006). Spatial extremes: models for the stationary case. Ann. Statist. 34(1), 146–168. [Crossref] Zbl1104.60021
  16. [16] Deheuvels, P. (1991). On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Statist. Probab. Lett. 12(5), 429–439. [Crossref] Zbl0749.62033
  17. [17] Di Bernardino, E., V. Maume-Deschamps, and C. Prieur (2013). Estimating a bivariate tail: a copula based approach. J. Multivariate Anal. 119, 81–100. [WoS] Zbl06244391
  18. [18] Dupuis, D. J. and B. L. Jones (2006). Multivariate extreme value theory and its usefulness in understanding risk. N. Am. Actuar. J. 10(4), 1–27. 
  19. [19] Durante, F. and G. Salvadori (2010). On the construction of multivariate extreme value models via copulas. Environmetrics 21(2), 143–161. [WoS] 
  20. [20] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997). Modelling Extremal Events for Insurance and Finance. Berlin: Springer. Zbl0873.62116
  21. [21] Falk, M. and R. Michel (2006). Testing for tail independence in extreme value models. Ann. Inst. Statist. Math. 58(2), 261–290. [Crossref] Zbl1095.62060
  22. [22] Galambos, J., J. Lechner, and E. Simiu (Eds.) (1994). Extreme Value Theory and Applications, Dordrecht. Kluwer. Zbl0803.00015
  23. [23] Genest, C. and L.-P. Rivest (1989). A characterization of Gumbel’s family of extreme value distributions. Statist. Probab. Lett. 8(3), 207–211. [Crossref] Zbl0701.62060
  24. [24] Gumbel, E. J. (1960). Bivariate exponential distributions. J. Amer. Statist. Assoc. 55, 698–707. [Crossref] Zbl0099.14501
  25. [25] Hall, P. and N. Tajvidi (2000). Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 6(5), 835–844. [Crossref][WoS] Zbl1067.62540
  26. [26] Heffernan, J. E. (2000). A directory of coefficients of tail dependence. Extremes 3(3), 279–290. [Crossref] Zbl0979.62040
  27. [27] Hüsler, J. and D. Li (2009). Testing asymptotic independence in bivariate extremes. J. Statist. Plann. Inference 139(3), 990–998. [Crossref] Zbl1156.62332
  28. [28] Leadbetter, M. R., G. Lindgren, and H. Rootzén (1983). Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York-Berlin. Zbl0518.60021
  29. [29] Ledford, A. W. and J. A. Tawn (1996). Statistics for near independence in multivariate extreme values. Biometrika 83(1), 169–187. [Crossref] Zbl0865.62040
  30. [30] Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. J. Bank. Financ. 24(7), 1097 – 1130. [Crossref] 
  31. [31] Maulik, K., S. Resnick, and H. Rootzén (2002). Asymptotic independence and a network traffic model. J. Appl. Probab. 39(4), 671–699. Zbl1090.90017
  32. [32] Mole, N., C. W. Anderson, S. Nadarajah, and C. Wright (1995). A generalized pareto distribution model for high concentrations in short-range atmospheric dispersion. Environmetrics 6(6), 595–606. [Crossref] 
  33. [33] Morton, I., J. Bowers, and G. Mould (1997). Estimating return period wave heights and wind speeds using a seasonal point process model. Coastal Engineering 31(1–4), 305 – 326. [Crossref] 
  34. [34] Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer. Second edition. Zbl1152.62030
  35. [35] Parey, S., T. T. H. Hoang, and D. Dacunha-Castelle (2010). Different ways to compute temperature return levels in the climate change context. Environmetrics 21(7-8), 698–718. [Crossref][WoS] 
  36. [36] Poon, S.-H., M. Rockinger, and J. Tawn (2004). Extreme value dependence in financial markets: Diagnostics, models, and financial implications. Rev. Financ. Stud. 17(2), 581–610. 
  37. [37] Resnick, S. and H. Rootzén (2000). Self-similar communication models and very heavy tails. Ann. Appl. Probab. 10(3), 753–778. Zbl1083.60521
  38. [38] Rincón, A. (2012). An index for climate change: a multivariate time series approach. Environmetrics 23(7), 617–622. [WoS][Crossref] 
  39. [39] Salvadori, G., C. D. Michele, N. Kottegoda, and R. Rosso (2007). Extremes in Nature - An Approach Using Copulas. New York: Springer. 
  40. [40] Schlather, M. (2001). Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution. Statist. Probab. Lett. 53(3), 325–329. [Crossref] Zbl0982.62052
  41. [41] Sibuya, M. (1960). Bivariate extreme statistics. I. Ann. Inst. Statist. Math. Tokyo 11, 195–210. Zbl0095.33703
  42. [42] Starica, C. (1999). Multivariate extremes for models with constant conditional correlations. J. Empir. Financ. 6(5), 515 – 553. [Crossref] 
  43. [43] Tawn, J. A. (1988). Bivariate extreme value theory: models and estimation. Biometrika 75(3), 397–415. [Crossref] Zbl0653.62045
  44. [44] Tawn, J. A. (1990). Modelling multivariate extreme value distributions. Biometrika 77(2), pp. 245–253. [Crossref][WoS] Zbl0716.62051
  45. [45] Tsai, Y.-L., D. J. Dupuis, and D. J. Murdoch (2013). A robust test for asymptotic independence of bivariate extremes. Statistics 47(1), 172–183. [WoS][Crossref] Zbl06181134
  46. [46] Tsai, Y.-L., D. J. Murdoch, and D. J. Dupuis (2011). Influence measures and robust estimators of dependence in multivariate extremes. Extremes 14(4), 343–363. [WoS][Crossref] Zbl1329.62148
  47. [47] Weller, G. B., D. S. Cooley, and S. R. Sain (2012). An investigation of the pineapple express phenomenon via bivariate extreme value theory. Environmetrics 23(5), 420–439. [Crossref][WoS] 
  48. [48] Zhang, D., M. T. Wells, and L. Peng (2008). Nonparametric estimation of the dependence function for a multivariate extreme value distribution. J. of Multivariate Anal. 99(4), 577 – 588. Zbl1333.62140
  49. [49] Zhang, Z., Y. Qi, and X. Ma (2011). Asymptotic independence of correlation coefficients with application to testing hypothesis of independence. Electron. J. Statist. 5, 342–372.[Crossref] Zbl1274.62401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.