Page 1 Next

Displaying 1 – 20 of 53

Showing per page

A second order approximation for the inverse of the distribution function of the sample mean

Jorge M. Arevalillo (2001)

Kybernetika

The classical quantile approximation for the sample mean, based on the central limit theorem, has been proved to fail when the sample size is small and we approach the tail of the distribution. In this paper we will develop a second order approximation formula for the quantile which improves the classical one under heavy tails underlying distributions, and performs very accurately in the upper tail of the distribution even for relatively small samples.

An asymptotically unbiased moment estimator of a negative extreme value index

Frederico Caeiro, M. Ivette Gomes (2010)

Discussiones Mathematicae Probability and Statistics

In this paper we consider a new class of consistent semi-parametric estimators of a negative extreme value index, based on the set of the k largest observations. This class of estimators depends on a control or tuning parameter, which enables us to have access to an estimator with a null second-order component of asymptotic bias, and with a rather interesting mean squared error, as a function of k. We study the consistency and asymptotic normality of the proposed estimators. Their finite sample...

Bootstrap method for central and intermediate order statistics under power normalization

Haroon Mohamed Barakat, E. M. Nigm, O. M. Khaled (2015)

Kybernetika

It has been known for a long time that for bootstrapping the distribution of the extremes under the traditional linear normalization of a sample consistently, the bootstrap sample size needs to be of smaller order than the original sample size. In this paper, we show that the same is true if we use the bootstrap for estimating a central, or an intermediate quantile under power normalization. A simulation study illustrates and corroborates theoretical results.

Comparison at optimal levels of classical tail index estimators: a challenge for reduced-bias estimation?

M. Ivette Gomes, Lígia Henriques-Rodrigues (2010)

Discussiones Mathematicae Probability and Statistics

In this article, we begin with an asymptotic comparison at optimal levels of the so-called "maximum likelihood" (ML) extreme value index estimator, based on the excesses over a high random threshold, denoted PORT-ML, with PORT standing for peaks over random thresholds, with a similar ML estimator, denoted PORT-MP, with MP standing for modified-Pareto. The PORT-MP estimator is based on the same excesses, but with a trial of accommodation of bias on the Generalized Pareto model underlying those excesses....

Convergence of the tail probability for weighted sums of negatively orthant dependent random variables

Haiwu Huang, Linyan Li, Xuewen Lu (2020)

Kybernetika

In this research, strong convergence properties of the tail probability for weighted sums of negatively orthant dependent random variables are discussed. Some sharp theorems for weighted sums of arrays of rowwise negatively orthant dependent random variables are established. These results not only extend the corresponding ones of Cai [4], Wang et al. [19] and Shen [13], but also improve them, respectively.

Estimation for heavy tailed moving average process

Hakim Ouadjed, Tawfiq Fawzi Mami (2018)

Kybernetika

In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations...

Estimation of second order parameters using probability weighted moments

Julien Worms, Rym Worms (2012)

ESAIM: Probability and Statistics

The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution (GPD) as an approximation for the distribution of excesses over a high threshold. In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in particular, this leads to the introduction of a new estimator for the second order parameter ρ, which will be compared to other recent estimators through...

Estimation of second order parameters using probability weighted moments

Julien Worms, Rym Worms (2012)

ESAIM: Probability and Statistics

The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution (GPD) as an approximation for the distribution of excesses over a high threshold. In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in particular, this leads to the introduction of a new estimator for the second order parameter ρ, which will be compared to other recent estimators through...

Extremal behaviour of stationary processes: the calibration technique in the extremal index estimation

D. Prata Gomes, Maria Manuela Neves (2010)

Discussiones Mathematicae Probability and Statistics

Classical extreme value methods were derived when the underlying process is assumed to be a sequence of independent random variables. However when observations are taken along the time and/or the space the independence is an unrealistic assumption. A parameter that arises in this situation, characterizing the degree of local dependence in the extremes of a stationary series, is the extremal index, θ. In several areas such as hydrology, telecommunications, finance and environment, for example, the...

Currently displaying 1 – 20 of 53

Page 1 Next