Coproducts in Categories without Uniqueness of cod and dom
Maciej Golinski; Artur Korniłowicz
Formalized Mathematics (2013)
- Volume: 21, Issue: 4, page 235-239
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topMaciej Golinski, and Artur Korniłowicz. "Coproducts in Categories without Uniqueness of cod and dom." Formalized Mathematics 21.4 (2013): 235-239. <http://eudml.org/doc/266787>.
@article{MaciejGolinski2013,
abstract = {The paper introduces coproducts in categories without uniqueness of cod and dom. It is proven that set-theoretical disjoint union is the coproduct in the category Ens [9].},
author = {Maciej Golinski, Artur Korniłowicz},
journal = {Formalized Mathematics},
keywords = {coproducts; disjoined union},
language = {eng},
number = {4},
pages = {235-239},
title = {Coproducts in Categories without Uniqueness of cod and dom},
url = {http://eudml.org/doc/266787},
volume = {21},
year = {2013},
}
TY - JOUR
AU - Maciej Golinski
AU - Artur Korniłowicz
TI - Coproducts in Categories without Uniqueness of cod and dom
JO - Formalized Mathematics
PY - 2013
VL - 21
IS - 4
SP - 235
EP - 239
AB - The paper introduces coproducts in categories without uniqueness of cod and dom. It is proven that set-theoretical disjoint union is the coproduct in the category Ens [9].
LA - eng
KW - coproducts; disjoined union
UR - http://eudml.org/doc/266787
ER -
References
top- [1] Grzegorz Bancerek. K¨onig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
- [2] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [4] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [5] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [6] Artur Korniłowicz. Products in categories without uniqueness of cod and dom. Formalized Mathematics, 20(4):303-307, 2012. doi:10.2478/v10037-012-0036-7.[Crossref] Zbl1301.18007
- [7] Beata Madras. Basic properties of objects and morphisms. Formalized Mathematics, 6 (3):329-334, 1997.
- [8] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1): 67-74, 1996.
- [9] Zbigniew Semadeni and Antoni Wiweger. Wst¸ep do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978. Zbl0445.18001
- [10] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259-267, 1996.
- [11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [12] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
- [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.