Coproducts in Categories without Uniqueness of cod and dom

Maciej Golinski; Artur Korniłowicz

Formalized Mathematics (2013)

  • Volume: 21, Issue: 4, page 235-239
  • ISSN: 1426-2630

Abstract

top
The paper introduces coproducts in categories without uniqueness of cod and dom. It is proven that set-theoretical disjoint union is the coproduct in the category Ens [9].

How to cite

top

Maciej Golinski, and Artur Korniłowicz. "Coproducts in Categories without Uniqueness of cod and dom." Formalized Mathematics 21.4 (2013): 235-239. <http://eudml.org/doc/266787>.

@article{MaciejGolinski2013,
abstract = {The paper introduces coproducts in categories without uniqueness of cod and dom. It is proven that set-theoretical disjoint union is the coproduct in the category Ens [9].},
author = {Maciej Golinski, Artur Korniłowicz},
journal = {Formalized Mathematics},
keywords = {coproducts; disjoined union},
language = {eng},
number = {4},
pages = {235-239},
title = {Coproducts in Categories without Uniqueness of cod and dom},
url = {http://eudml.org/doc/266787},
volume = {21},
year = {2013},
}

TY - JOUR
AU - Maciej Golinski
AU - Artur Korniłowicz
TI - Coproducts in Categories without Uniqueness of cod and dom
JO - Formalized Mathematics
PY - 2013
VL - 21
IS - 4
SP - 235
EP - 239
AB - The paper introduces coproducts in categories without uniqueness of cod and dom. It is proven that set-theoretical disjoint union is the coproduct in the category Ens [9].
LA - eng
KW - coproducts; disjoined union
UR - http://eudml.org/doc/266787
ER -

References

top
  1. [1] Grzegorz Bancerek. K¨onig’s theorem. Formalized Mathematics, 1(3):589-593, 1990. 
  2. [2] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990. 
  3. [3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  4. [4] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  5. [5] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  6. [6] Artur Korniłowicz. Products in categories without uniqueness of cod and dom. Formalized Mathematics, 20(4):303-307, 2012. doi:10.2478/v10037-012-0036-7.[Crossref] Zbl1301.18007
  7. [7] Beata Madras. Basic properties of objects and morphisms. Formalized Mathematics, 6 (3):329-334, 1997. 
  8. [8] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1): 67-74, 1996. 
  9. [9] Zbigniew Semadeni and Antoni Wiweger. Wst¸ep do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978. Zbl0445.18001
  10. [10] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259-267, 1996. 
  11. [11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  12. [12] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993. 
  13. [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  14. [14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.