Non-Fourier heat removal from hot nanosystems through graphene layer

A. Sellitto; F.X. Alvarez

Nanoscale Systems: Mathematical Modeling, Theory and Applications (2012)

  • Volume: 1, page 38-47
  • ISSN: 2299-3290

Abstract

top
Nonlocal effects on heat transport beyond a simple Fourier description are analyzed in a thermodynamical model. In the particular case of hot nanosystems cooled through a graphene layer, it is shown that these effects may increase in a ten percent the amount of removed heat, as compared with classical predictions based on the Fourier law.

How to cite

top

A. Sellitto, and F.X. Alvarez. "Non-Fourier heat removal from hot nanosystems through graphene layer." Nanoscale Systems: Mathematical Modeling, Theory and Applications 1 (2012): 38-47. <http://eudml.org/doc/266856>.

@article{A2012,
abstract = {Nonlocal effects on heat transport beyond a simple Fourier description are analyzed in a thermodynamical model. In the particular case of hot nanosystems cooled through a graphene layer, it is shown that these effects may increase in a ten percent the amount of removed heat, as compared with classical predictions based on the Fourier law.},
author = {A. Sellitto, F.X. Alvarez},
journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
keywords = {Nonlocal effects; nanosystems cooling; non-Fourier theory; nonlocal effects},
language = {eng},
pages = {38-47},
title = {Non-Fourier heat removal from hot nanosystems through graphene layer},
url = {http://eudml.org/doc/266856},
volume = {1},
year = {2012},
}

TY - JOUR
AU - A. Sellitto
AU - F.X. Alvarez
TI - Non-Fourier heat removal from hot nanosystems through graphene layer
JO - Nanoscale Systems: Mathematical Modeling, Theory and Applications
PY - 2012
VL - 1
SP - 38
EP - 47
AB - Nonlocal effects on heat transport beyond a simple Fourier description are analyzed in a thermodynamical model. In the particular case of hot nanosystems cooled through a graphene layer, it is shown that these effects may increase in a ten percent the amount of removed heat, as compared with classical predictions based on the Fourier law.
LA - eng
KW - Nonlocal effects; nanosystems cooling; non-Fourier theory; nonlocal effects
UR - http://eudml.org/doc/266856
ER -

References

top
  1. C. C. Ackerman and R. A. Guyer. Temperature pulses in dielectric solids. Annals of Physics 50, 128–185 (1968). 
  2. F. X. Alvarez, D. Jou, and A. Sellitto. Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, 014317 (2009) [WoS] 
  3. F. X. Alvarez, D. Jou, and A. Sellitto. Phonon boundary effects and thermal conductivity of rough concentric nanowires. J. Heat Transfer 133, 022402 (2011) [WoS] 
  4. A. Balandin and K. L. Wang. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84, 6149 (1998) 
  5. A. Balandin and K. L. Wang. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544–1549 (1998) 
  6. A. A. Balandin. Chill Out. IEEE Spectrum, pages 35–39 (2009) 
  7. A. A. Balandin. Thermal properties of graphene and nanostructured carbon materials. Nature Materials 10, 569–581 (2011) [PubMed][WoS] 
  8. A. A. Balandin, S. Ghosh, W. Baoand, I. Calizo, D. Teweldebrhan, F. Miao, and C.-N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008) [WoS][PubMed][Crossref] 
  9. G. Bergmann. Conductance of a perfect thin film with diffuse surface scattering. Phys. Rev. Lett. 94, 106801 (2005) [PubMed] 
  10. D. Burnett. The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. London Math. Soc. 40, 382–435 (1935) Zbl0013.04405
  11. B.-Y. Cao and Z.-Y. Guo. Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (2007) [WoS] 
  12. C. Cattaneo. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena, 3: 83–101 (1948) Zbl0035.26203
  13. S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, London (1970) Zbl0063.00782
  14. G. Chen. Nanoscale Energy Transport and Conversion - A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford (2005) 
  15. V. A. Cimmelli. Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009) Zbl1195.80001
  16. Y. Dong and Z.-Y. Guo. Entropy analyses for hyperbolic heat conduction based on the thermomass model. Int. J. Heat Mass Transfer 54, 1924–1929 (2011) [WoS] Zbl1217.80031
  17. Y. Dong, B.-Y. Cao, and Z.-Y. Guo. Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (2011) [WoS] 
  18. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Pys. Lett. 92, 151911 (2008) [WoS] 
  19. Z.-Y. Guo. Motion and transfer of thermal mass - thermal mass and thermon gas. J. Eng. Term 27, 631–634 (2006) 
  20. Z.-Y. Guo and Q.-W. Hou. Thermal wave based on the thermomass model. J. Heat Trans. - T. ASME 132, 072403 (2010) 
  21. R. A. Guyer and J. A. Krumhansl. Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966) 
  22. R. A. Guyer and J. A. Krumhansl. Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966) 
  23. D. Jou, J. Casas-Vázquez, and G. Lebon. Extended irreversible thermodynamics revisited (1988-1998). Rep. Prog. Phys. 62, 1035–1142 (1999) 
  24. D. Jou, J. Casas-Vázquez, and G. Lebon. Extended Irreversible Thermodynamics. Springer, Berlin, fourth revised edition (2010) Zbl1185.74002
  25. G. Lebon, D. Jou, and J. Casas-Vázquez. Understanding nonequilibrium thermodynamics. Springer, Berlin (2008) Zbl1163.80001
  26. A. A. Maznev, J. A. Johnson, and K. A. Nelson. Onset of nondiffusive phonon transport in transient thermal grating decay. Phys. Rev. B 84, 195206 (2011) [WoS] 
  27. A. J. Minnich, G. Chen, S. Mansoor, and B. S. Yilbas. Quasiballistic heat transfer studied using the frequencydependent Boltzmann transport equation. Phys. Rev. B 84, 235207 (2011) [WoS] 
  28. A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011) [WoS][PubMed] 
  29. A. L. Moore, S. K. Saha, R. S. Prasher, and L. Shi. Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Appl. Phys. Lett. 93, 083112 (2008) [WoS] 
  30. D. L. Nika and A. A. Balandin. Two-dimensional phonon transport in graphene. J. Phys.: Condens. Matter 24, 233203 (2012) 
  31. D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin. Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Appl. Phys. Lett. 94, 203103 (2009) [WoS] 
  32. D. L. Nika, E. P. Pokatilov, A. S. Askerox, and A. A. Balandin. Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009) [WoS] 
  33. D. L. Nika, A. S. Askerov, and A. A. Balandin. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 12, 3238–3244 (2012) [PubMed][WoS] 
  34. A. Sellitto and V. A. Cimmelli. A continuum approach to thermomass theory. J. Heat Trans. - T. ASME, ahead of print - DOI:10.1115/1.4006956. [Crossref] 
  35. A. Sellitto, F. X. Alvarez, and D. Jou. Second law of thermodynamics and phonon-boundary conditions in nanowires. J. Appl. Phys. 107, 064302 (2010) [WoS] 
  36. A. Sellitto, F. X. Alvarez, and D. Jou. Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires. J. Appl. Phys. 107, 114312 (2010) 
  37. A. Sellitto, F. X. Alvarez, and D. Jou. Phonon-wall interactions and frequency-dependent thermal conductivity in nanowires. J. Appl. Phys. 109, 064317 (2011) 
  38. A. Sellitto, F. X. Alvarez, and D. Jou. Geometrical dependence of thermal conductivity in elliptical and rectangular nanowires. Int. J. Heat Mass Transfer 55, 3114–3120 (2012) [WoS] 
  39. A. Sellitto, D. Jou, and J. Bafaluy. Nonlocal effects in radial heat transport in silicon thin layers and graphene sheets. Proc. R. Soc. A 468, 1217–1229 (2012) 
  40. Z. Tešanovic, M. V. Jaric, and S. Maekawa. Quantum transport and surface scattering. Phys. Rev. Lett. 57, 2760–2763 (1986) 
  41. D. Y. Tzou. Macro to micro-scale heat transfer. The lagging behaviour. Taylor and Francis, New York (1997) 
  42. D. Y. Tzou. Nonlocal behavior in phonon transport. Int. J. Heat Mass Transfer 54, 475–481 (2011) [WoS] Zbl1205.80051
  43. D. Y. Tzou and Z.-Y. Guo. Nonlocal behavior in thermal lagging. Int. J. Thermal Sci. 49, 1133–1137 (2010) 
  44. M. Wang, N. Yang, and Z.-Y. Guo. Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (2011) 
  45. Z. M. Zhang. Nano/Microscale heat transfer. McGraw-Hill, New York (2007) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.