Overview of Drude-Lorentz type models and their applications

Paolo Di Sia

Nanoscale Systems: Mathematical Modeling, Theory and Applications (2014)

  • Volume: 3, Issue: 1
  • ISSN: 2299-3290

Abstract

top
This paper presents an overview of mathematical models for a better understanding of mechanical processes, as well as dynamics, at the nanoscale. After a short introduction related to semi-empirical and ab initio formulations, molecular dynamics simulations, atomic-scale finite element method, multiscale computational methods, the paper focuses on the Drude-Lorentz type models for the study of dynamics, considering the results of a recently appeared generalization of them for the nanoscale domain. The theoretical framework is illustrated and some examples are considered.

How to cite

top

Paolo Di Sia. "Overview of Drude-Lorentz type models and their applications." Nanoscale Systems: Mathematical Modeling, Theory and Applications 3.1 (2014): null. <http://eudml.org/doc/267041>.

@article{PaoloDiSia2014,
abstract = {This paper presents an overview of mathematical models for a better understanding of mechanical processes, as well as dynamics, at the nanoscale. After a short introduction related to semi-empirical and ab initio formulations, molecular dynamics simulations, atomic-scale finite element method, multiscale computational methods, the paper focuses on the Drude-Lorentz type models for the study of dynamics, considering the results of a recently appeared generalization of them for the nanoscale domain. The theoretical framework is illustrated and some examples are considered.},
author = {Paolo Di Sia},
journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
keywords = {Theoretical Modeling; Drude-Lorentz type Models; Computational Methods; Finite Element Methods; Nano-Bio-Technology},
language = {eng},
number = {1},
pages = {null},
title = {Overview of Drude-Lorentz type models and their applications},
url = {http://eudml.org/doc/267041},
volume = {3},
year = {2014},
}

TY - JOUR
AU - Paolo Di Sia
TI - Overview of Drude-Lorentz type models and their applications
JO - Nanoscale Systems: Mathematical Modeling, Theory and Applications
PY - 2014
VL - 3
IS - 1
SP - null
AB - This paper presents an overview of mathematical models for a better understanding of mechanical processes, as well as dynamics, at the nanoscale. After a short introduction related to semi-empirical and ab initio formulations, molecular dynamics simulations, atomic-scale finite element method, multiscale computational methods, the paper focuses on the Drude-Lorentz type models for the study of dynamics, considering the results of a recently appeared generalization of them for the nanoscale domain. The theoretical framework is illustrated and some examples are considered.
LA - eng
KW - Theoretical Modeling; Drude-Lorentz type Models; Computational Methods; Finite Element Methods; Nano-Bio-Technology
UR - http://eudml.org/doc/267041
ER -

References

top
  1. [1] K. T. Ramesh. Nanomaterials: Mechanics and Mechanisms. Springer, 353 pp., (2009). 
  2. [2] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, 672 pp., (2000). Zbl1191.74002
  3. [3] M. L. Bucalem and K-J. Bathe. The Mechanics of Solids and Structures - Hierarchical Modeling and the Finite Element Solution. Springer, 598 pp., (2011). Zbl1216.74001
  4. [4] A. N. Cleland Foundations of Nanomechanics: From Solid-State Theory to Device Applications. Springer, 436 pp., (2003). 
  5. [5] J.-L. Liu. Mathematical modeling of semiconductor quantum dots based on the nonparabolic effective-mass approximation. Nano MMTA, 1, 58, (2012). Zbl1273.65162
  6. [6] J. L. Lopez and J. Montejo-Gamez. On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions. Nano MMTA, 2, 49, (2013). Zbl1273.81143
  7. [7] J. R. Claeyssen, T. Tsukazan, L. Tonetto and D. Tolfo. Modeling the tip-sample interaction in atomic force microscopy with Timoshenko beam theory. Nano MMTA, 2, 124, (2013). Zbl1273.74139
  8. [8] F. M. Borodich, B. A. Galanov, S. N. Gorb, M. Y. Prostov, Y. I. Prostov and M. M. Suarez-Alvarez. An inverse problem for adhesive contact and non-direct evaluation of material properties for nanomechanics applications. Nano MMTA, 1, 80, (2012). 
  9. [9] F. X. Rlvarez, V. A. Cimmelli, D. Jou and A. Sellitto. Mesoscopic description of boundary effects in nanoscale heat transport. Nano MMTA, 1, 112, (2012). Zbl1273.74003
  10. [10] A. Sellitto and F. X. Alvarez. Non-Fourier heat removal from hot nanosystems through graphene layer. Nano MMTA, 1, 38, (2012). Zbl1273.80004
  11. [11] G. Panasenko. Multi-scale Modelling for Structures and Composites. Springer, 398 pp., (2005). Zbl1078.74002
  12. [12] P. Gumbsch and R. Pippan. Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics. Springer, 394 pp., (2010). Zbl1198.74002
  13. [13] S. Attinger and P. D. Koumoutsakos. Multiscale Modelling And Simulation. Springer, 277 pp., (2004). Zbl1051.00006
  14. [14] S. C. Singh, H. B. Zeng, C. Guo and W. Cai. Nanomaterials. John Wiley & Sons, 810 pp., (2012). 
  15. [15] M. Ziman. Principles of the Theory of Solids. Cambridge University Press, 452 pp., (1979). Zbl0121.44801
  16. [16] C. Kittel. Introduction to Solid State Physics. John Wiley & Sons, 766 pp., (2005). Zbl0052.45506
  17. [17] Y. Gogotsi. Nanomaterials Handbook. CRC Press, 800 pp., (2006). 
  18. [18] P. Di Sia. Classical and quantum transport processes in nano-bio-structures: a new theoretical model and applications. Faculty of Science, Verona University, Italy, PhD Thesis, 210 pp., (2011). 
  19. [19] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics: An Introduction. Springer, 200 pp., (2010). Zbl1197.82067
  20. [20] D. Vasileska and S. M. Goodnick. Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling. Springer, 441 pp., (2011). 
  21. [21] P. Di Sia. An Analytical Transport Model for Nanomaterials. J. Comput. Theor. Nanosci. 8, 84, (2011). 
  22. [22] P. Di Sia. An Analytical Transport Model for Nanomaterials: The Quantum Version. J. Comput. Theor. Nanosci. 9, 31, (2012). 
  23. [23] P. Di Sia. New theoretical results for high diffusive nanosensors based on ZnO oxides. Sens. & Transducers J. 122 (1), 1, (2010). 
  24. [24] P. Di Sia. Oscillating velocity and enhanced diffusivity of nanosystems from a new quantum transport model. J. NanoR., 16, 49, (2011). 
  25. [25] P. Di Sia. A new theoretical method for transport processes in nanosensoristics. J. NanoR., 20, 143, (2012). 
  26. [26] P. Di Sia. Nanotechnology between Classical and Quantum Scale: Application of a new interesting analytical Model. Adv. Sci. Lett., 5, 1, (2012). 
  27. [27] P. Di Sia. A new theoretical Model for the dynamical Analysis of Nano-Bio-Structures. Adv. Nano Res., 1 (1), 1, (2013). 
  28. [28] P. Di Sia. About the Influence of Temperature in Single-Walled Carbon Nanotubes: Details from a new Drude-Lorentz-like Model. Appl. Surf. Sci., 275, 384, (2013). 
  29. [29] P. Di Sia. Characteristics in Diffusion for High-Efficiency Photovoltaics Nanomaterials: an interesting Analysis. J. Green Sci. Technol., in press, (2013). 
  30. [30] P. Di Sia. Relativistic motion in nanostructures: interesting details by a new Drude-Lorentz-like model. Conference Series, Third International Conference on Theoretical Physics Theoretical Physics and its Application, June 24-28, 2013, Moscow, Russia. 
  31. [31] E. C. Fernandes da Silva. GaAs: effective-mass parameters. Data extract from Landolt-Börnstein III/44A: Semiconductors – New Data and Updates for I-VII, III-V, III-VI and IV-VI Compounds. Springer-Verlag, (2009). 
  32. [32] I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. E. McCandless and R. Noufi. Characterization of 19.9%-Efficient CIGS Absorbers. 33rd IEEE Photovoltaic Specialists Conference, May 11–16, San Diego, California, Preprint, (2008). 
  33. [33] Available at: http://www.semiconductors.co.uk/propiivi5410.htm 
  34. [34] J. M. Marulanda and A. Srivastava. Carrier Density and Effective Mass Calculation for carbon Nanotubes. Phys. Stat. Sol. (b), 245, 11, 2558, (2008). 
  35. [35] H. Altan, F. Huang, J. F. Federici, A. Lan and H. Grebel. Optical and electronic characteristics of single walled carbon nanotubes and silicon nanoclusters by tetrahertz spectroscopy. J. Appl. Phys., 96, 6685, (2004). [Crossref] 
  36. [36] I. Pirozhenko and A. Lambrecht. Influence of slab thickness on the Casimir force. Phys. Rev. A, 77, 013811, (2008). [Crossref] Zbl1137.81397
  37. [37] C. A. Schmuttenmaer. Using Terahertz Spectroscopy to Study Nanomaterials. Terahertz Science and Technology, 1 (1), 1, (2008). 
  38. [38] J. B. Baxter and C. A. Schmuttenmaer. Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time- Resolved Terahertz Spectroscopy. J. Phys. Chem. B, 110, 25229, (2006). [Crossref] 
  39. [39] P. Parkinson, H. J. Joyce, Q. Gao, H. H. Tan, X. Zhang, J. Zou, C. Jagadish, L. M. Herz and M. B. Johnston. Carrier Lifetime and Mobility Enhancement in Nearly Defect-Free Core−Shell Nanowires Measured Using Time-Resolved Terahertz Spectroscopy. Nano Letters, 9, 9, 3349, (2009). [Crossref] 
  40. [40] P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston and L. M. Herz. Transient Terahertz Conductivity of GaAs Nanowires. Nano Letters, 7, 7, 2162, (2007). [Crossref] 
  41. [41] D. J. Aschaffenburg, M. R. C. Williams, D. Talbayev, D. F. Santavicca, D. E. Prober and C. A. Schmuttenmaer. Efficient measurement of broadband terahertz optical activity. Appl. Phys. Lett., 100, 241114 (5), (2012). [Crossref] 
  42. [42] P. Di Sia. THz Spectroscopy and Nanostructures: a short interesting Review, Lett. Appl. NanoBioSci, 1 (!), 008, (2012). 
  43. [43] P. Deák, T. Frauenheim and M. R. Pederson. Computer Simulation of Materials at Atomic Level. John Wiley & Sons, 727 pp., (2000). 
  44. [44] S. Li and W. K. Liu. Meshfree Particle Methods. Springer, 502 pp., (2004). Zbl1073.65002
  45. [45] J. Holman, A. Parsons, G. Pilling and G. Price. Chemistry: Introducing Inorganic, Organic and Physical Chemistry. Oxford University Press, 1440 pp., (2013). 
  46. [46] D. Sholl and J. A. Steckel. Density Functional Theory: A Practical Introduction. John Wiley & Sons, 252 pp., (2011). 
  47. [47] E. Engel and R. M. Dreizler. Density Functional Theory: An Advanced Course. Springer, 531 pp., (2011). Zbl1216.81004
  48. [48] R. Car and M. Parrinello. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett., 55 (20), 2471, (1985). [Crossref] 
  49. [49] T. Kühne, M. Krack, F. Mohamed and M. Parrinello. Efficient and Accurate Car-Parrinello-like Approach to Born- Oppenheimer Molecular Dynamics. Phys. Rev. Lett., 98 (6), 066401, (2007). [Crossref] 
  50. [50] M. Avriel. Nonlinear Programming: Analysis and Methods. Courier Dover Publications, 512 pp., (2003). 
  51. [51] J. Thijssen. Computational Physics. Cambridge University Press, 620 pp., (2007). Zbl1153.81004
  52. [52] M. Yussouff and R. Zeller. An Efficient Korringa-Kohn-Rostoker Method for "complex" Lattices, Vol. 80, Vol. 166, Ed. International Centre for Theoretical Physics, (1980). 
  53. [53] U. Mizutani. Introduction to the Electron Theory of Metals. Cambridge University Press, 590 pp., (2001). 
  54. [54] J. A. C. Bland and H. Bretislav. Ultrathin Magnetic Structures I: An Introduction to the Electronic, Magnetic and Structural Properties. Springer, 350 pp., (2005). 
  55. [55] K. Wandelt. Surface and Interface Science. John Wiley & Sons, Vols 1-2, 467 pp., (2012). 
  56. [56] J. Wang. Key Issues of Classical Molecular Dynamics Simulation. Lambert Academic Publishing, 136 pp., (2010). 
  57. [57] W. Tang. Molecular Dynamics Simulations of Carbon Nanotubes in Liquid Flow. ProQuest, 228 pp., (2007). 
  58. [58] S. S. Vinogradov, P. D. Smith and E. D. Vinogradova. Canonical Problems in Scattering and Potential Theory Part II: Acoustic and Electromagnetic Diffraction by Canonical Structures. CRC Press, 520 pp., (2010). Zbl1009.76002
  59. [59] M. Cherkaoui, L. Capolungo. Atomistic and Continuum Modeling of Nanocrystalline Materials: Deformation Mechanisms and Scale Transition. Springer, 387 pp., (2009). 
  60. [60] C. Y. Fong, M. Shaughnessy, L. Damewood and L. H. Yang. Theory, Experiment and Computation of Half Metals for Spintronics: Recent Progress in Si-based Materials. NanoMMTA, 1, 1, (2012). 
  61. [61] C. E. Burkhardt and J. J. Leventhal. Foundations of Quantum Physics. Springer, 530 pp., (2008). Zbl1170.81002
  62. [62] P. J. Munson and R. K. Singh. Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence-structure alignment. Protein Science, 6, (7), 1467, (1997). 
  63. [63] P. J. Munson, R. K. Singh. Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence-structure alignment. Protein Science, 6, 7, 1467, (1997). 
  64. [64] W. K. Liu, E. G. Karpov, S. Zhang and H. S. Park. An introduction to computational nanomechanics and materials. Comput. Methods Appl. Mech. Engrg., 193, (17–20), 1529, (2004). Zbl1079.74506
  65. [65] S. M. Musa. Computational Finite Element Methods in Nanotechnology. CRC Press, 640 pp., (2012). 
  66. [66] J. Leszczynski. Trends in Computational Nanomechanics. Springer, 628 pp., (2010). 
  67. [67] R. de Borst and E. Ramm. Multiscale Methods in Computational Mechanics: Progress and Accomplishments. Springer, 446 pp., (2011). Zbl1202.74012
  68. [68] L. Mielke, T. Belytschko, and G. C. Schatz. Nanoscale Fracture Mechanics. Annu. Rev. Phys. Chem., 58, 185, (2007). [Crossref] 
  69. [69] H. Gao, Y. Huang and F. F. Abraham. Continuum and atomistic studies of intersonic crack propagation. J. Mech. Phys. Solids, 49, 2113, (2001). [Crossref] Zbl1093.74510
  70. [70] H. Van Swygenhoven, P. M. Derlet and A. Hasnaoui. Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B, 66, 024101, (2002). [Crossref] Zbl1090.74535
  71. [71] T. S. Gates, G. M. Odegard, S. J. V. Frankland and T. C. Clancy. Computational materials: Multi-scale modeling and simulation of nanostructured materials. Composites Science and Technology, 65, 2416, (2005). 
  72. [72] P. Drude. Zur Elektronentheorie der metalle. Annalen der Physik, 306 (3), 566, (1900). Zbl31.0811.03
  73. [73] H. A. Bethe and A. Sommerfeld. Elektronentheorie der Metalle. Springer Verlag, 290 pp., (1967). Zbl0008.14302
  74. [74] N. V. Smith. Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B, 64, 155106, (2001). [Crossref] 
  75. [75] W. A. Goddard III, D. W. Brenner, S. E. Lyshevski and G. J. Iafrate. Handbook of Nanoscience, Engineering, and Technology. CRC Press, 1071 pp., (2012). 
  76. [76] T. C. Choy. Effective Medium Theory: Principles and Applications. Oxford University Press, 182 pp., (1999). 
  77. [77] M. G. Kuzyk. Polymer Fiber Optics: Materials, Physics, and Applications. CRC Press, 399 pp., (2010). 
  78. [78] M. S. Green. Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids. J. Chem. Phys., 22, 398, (1954). 
  79. [79] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn., 12, 570, (1957). [Crossref] 
  80. [80] W. Rudin, Real and Complex Analysis, McGraw-Hill International Editions: Mathematics Series, McGraw-Hill Publishing Co, 416 pp., (1987). 
  81. [81] P. J. Ventura, L. C. Costa, M. C. Carmo, H. E. Roman and L. Pavesi. AC Conductivity of Porous Silicon from Monte Carlo Simulations. J. Porous Materials, 7 (1-3), 107, (2000). 
  82. [82] P. Di Sia. Present and Future of Nanotechnologies: Peculiarities, Phenomenology, Theoretical Modelling, Perspectives. Reviews in Theoretical Science (RITS), in press, (2014). 
  83. [83] P. Di Sia. Effects on Diffusion by Relativistic Motion in Nanomaterial-Based Nanodevices. Conference Series, International conference “NANOSMAT-2013” (Granada-Spain) (September 22-25, 2013), in press (2013-2014). 
  84. [84] D. Sridevi and K. V. Rajendran. Preparation of ZnO Nanoparticles and Nanorods by Using CTAB Assisted Hydrothermal Method. Int. J. Nanotech. Appl., 3 (2), 43, (2009). 
  85. [85] J. B. Baxter and C. A. Schmuttenmaer. Carrier dynamics in bulk ZnO. II. Transient photoconductivity measured by timeresolved terahertz spectroscopy. Phys. Rev. B, 80 , 235206-1 10, (2009).[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.