Theory, Experiment and Computation of Half Metals for Spintronics: Recent Progress in Si-based Materials

C. Y. Fong; M. Shaughnessy; L. Damewood; L. H. Yang

Nanoscale Systems: Mathematical Modeling, Theory and Applications (2012)

  • Volume: 1, page 1-22
  • ISSN: 2299-3290

Abstract

top
Since the term “spintronics” was conceived in 1996, there have been several directions taken to develop new semiconductor-based magnetic materials for device applications using spin, or spin and charge, as the operational paradigm. Anticipating their integration into mature semiconductor technologies, one direction is to make use of materials involving Si. In this review, we focus on the progress made, since 2005, in Si-based half metallic spintronic materials. In addition to commenting on the experimental growth techniques, we review the computational models and the theory behind the non-spin-polarized and spin-polarized forms of density functional theory and the Kohn-Sham equations. Two software packages, associated with the computational methods, are also discussed. Both experimental and theoretical aspects, leading to recent design of half metallic quantum structures, will be reviewed.

How to cite

top

C. Y. Fong, et al. "Theory, Experiment and Computation of Half Metals for Spintronics: Recent Progress in Si-based Materials." Nanoscale Systems: Mathematical Modeling, Theory and Applications 1 (2012): 1-22. <http://eudml.org/doc/266869>.

@article{C2012,
abstract = {Since the term “spintronics” was conceived in 1996, there have been several directions taken to develop new semiconductor-based magnetic materials for device applications using spin, or spin and charge, as the operational paradigm. Anticipating their integration into mature semiconductor technologies, one direction is to make use of materials involving Si. In this review, we focus on the progress made, since 2005, in Si-based half metallic spintronic materials. In addition to commenting on the experimental growth techniques, we review the computational models and the theory behind the non-spin-polarized and spin-polarized forms of density functional theory and the Kohn-Sham equations. Two software packages, associated with the computational methods, are also discussed. Both experimental and theoretical aspects, leading to recent design of half metallic quantum structures, will be reviewed.},
author = {C. Y. Fong, M. Shaughnessy, L. Damewood, L. H. Yang},
journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
keywords = {Digital ferromagnetic heterostructure; half metals; hole doping; spintronics; trilayers},
language = {eng},
pages = {1-22},
title = {Theory, Experiment and Computation of Half Metals for Spintronics: Recent Progress in Si-based Materials},
url = {http://eudml.org/doc/266869},
volume = {1},
year = {2012},
}

TY - JOUR
AU - C. Y. Fong
AU - M. Shaughnessy
AU - L. Damewood
AU - L. H. Yang
TI - Theory, Experiment and Computation of Half Metals for Spintronics: Recent Progress in Si-based Materials
JO - Nanoscale Systems: Mathematical Modeling, Theory and Applications
PY - 2012
VL - 1
SP - 1
EP - 22
AB - Since the term “spintronics” was conceived in 1996, there have been several directions taken to develop new semiconductor-based magnetic materials for device applications using spin, or spin and charge, as the operational paradigm. Anticipating their integration into mature semiconductor technologies, one direction is to make use of materials involving Si. In this review, we focus on the progress made, since 2005, in Si-based half metallic spintronic materials. In addition to commenting on the experimental growth techniques, we review the computational models and the theory behind the non-spin-polarized and spin-polarized forms of density functional theory and the Kohn-Sham equations. Two software packages, associated with the computational methods, are also discussed. Both experimental and theoretical aspects, leading to recent design of half metallic quantum structures, will be reviewed.
LA - eng
KW - Digital ferromagnetic heterostructure; half metals; hole doping; spintronics; trilayers
UR - http://eudml.org/doc/266869
ER -

References

top
  1. G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange Phys. Rev. B 39, 4828 (1989). 
  2. M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988). 
  3. J. M. Daughton, Magnetoresistive memory technology. Thin Solid Films 216, 162 (1992). 
  4. W. J. Gallagher, and S. S. P. Parkin, Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip. IBM Journal of Research and Development 50, 5 (2006). 
  5. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, von S. Molnár, Roukes, M. L., Chtchelkanova, A. Y. and Treger, D. M. Spintronics: A spin-based electronics vision for the future, Science 294, 1488 (2001). 
  6. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, (Ga,Mn)As: A new dilute magnetic semiconductor based on GaAs Appl. Phys. Lett. 69, 363 (1996). 
  7. F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27, 063001 (2012). 
  8. G. J. Strijkers, F. Y. Yang, C. L. Chien, and J. M. Byers, Andreev reflections at metal/superconductor point contacts: Measurement and analysis. Phys. Rev. B 63, 104510 (2001). 
  9. Y. S. Dedkov, U. Rudiger, and G. Guntherodt, Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin resolved photoelectron spectroscopy. Phys. Rev. B 2002, 064417 (2002). 
  10. W. H. Xie, Y. Q. Xu, B. G. Liu, and D. G. Pettifor, Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides. Phys. Rev. Lett. 91, 037204 (2003). [PubMed] 
  11. J. E. Pask, L. H. Yang, C. Y. Fong, W. E. Pickett, and S. Dag, Six low-strain zinc-blende half metals: An ab initio investigation. Phys. Rev. B 67, 224420 (2003). 
  12. M. C. Qian, C. Y. Fong, and L. H. Yang, Coexistence of localized magnetic moment and opposite-spin itinerant electrons in MnC. Phys. Rev. B 70, 052404 (2004). 
  13. E. A., Karhu, U. K. Rößler, A. N. Bogdanov, S. Kahwaji, B. J. Kirby, H. Fritzsche, M. D., Robertson, C. F. Majkrzak, and T. L. Monchesky, Chiral modulations and reorientation effects in MnSi thin films. Phys. Rev. B 85, 094429 (2012). 
  14. H. J., Liu, J. H. Owen, G. and K. Miki, Degenerate electonic structure of reconstructed MnSi1.7 nanowires on Si(001). J. of Phys: Condens. Matter. 24, 095005 (2012). 
  15. Q. R. Hou, W. Zhao, Y. B. Chen,and Y. J. He, Preparation of n-type nano-scale MnSi1.7 films by addition of iron. Mat. Chem. and Phys. 121, 103 (2011). 
  16. D. M. Shukurova, A. S. Orekhov, V. V. Klechkovskaya, and T. S. Kamilov, Mn4Si7-Si<Mn>-Mn4Si7 and Mn4Si7- Si<Mn>-M photodiodes. Technical Physics 56, 1423 (2011). [Crossref] 
  17. M. Hortamani, L. M. Sandratskii, P. Kratzer, and I. Mertig, Searching for Si-based spintronics by first principles calculations. New J. of Phys. 11, 125009 (2009). 
  18. A. Allam, C. A. Nunes, J. Zalesak, and M.-C. Record, On the stability of the higher manganese silicides. J. of Alloys and Compounds 512, 278 (2012). 
  19. M. Julliere, Tunneling between ferromagnetic-films. Phys Lett A 54, 225 (1975). 
  20. K. Westerholt, L. Bergmann, and J. Grabis, Half metallic alloys - fundamentals and applications. 67 (Springer, 2005). 
  21. T. Kubota, S. Tsunegi, M. Oogane, S. Mizukami, T. Miyazaki, H. Naganuma, and Y. Ando, Half-metallicity and Gilbert damping constant in Co2FexMn1-xSi Heusler alloys dependent on the film composition. Appl. Phys. Lett. 94, 122504 (2009). 
  22. J. Sagar, H. Sukegawa, L. Lari, V. K. Lazarov, S. Mitani, K. O’Grady, and A. Hirohat, The effect of interfaces on the magnetic activation volumes in single crystal Co2FeSi Heusler alloy thin films. Appl. Phys. Lett. 101, 102410 (2012). 
  23. F. M. Zhang, X. C. Liu, J. Gao, X. S. Wu, Y. W. Du, H. Zhu, J. Q. Xiao, and P. Chen, Investigation on the magnetic and electrical properties of crystalline Mn0.05Si0.95 films. Appl. Phys. Lett. 85, 786 (2004). 
  24. W. F. Su, L. Gong, J. L. Wang, S. Chen, Y. L. Fan, and Z. M. Jiang, Group-IV-diluted magnetic semiconductor FexSi1-x thin films grown by molecular beam epitaxy. J. of Cryst. Grow. 311, 2139 (2009). 
  25. L. Guo, and X. Zheng, Transition metal encapsulated hydrognated silicon nanotubes: Silicon-based half metal. Phys Lett A 375, 4209 (2011). 
  26. L. Zeng, E. Helgren, M. Rahimi, F. Hellman, R. Islam, B. J. Wilkens, R. J. Culbertson, and D. J. Smith, Quenched magnetic moment in Mn-doped amorphous Si films. Phys. Rev. B, 073306 (2008). 
  27. H. Wu, M. Hortamani, P. Kratzer, and M. Scheffler, First-principles study of ferromagnetism in epitaxial Si-Mn thin films on Si(001). Phys. Rev. Lett. 92, 237202 (2004). [Crossref] 
  28. M. I. Current, Ion implantation for silicon device manufacturing: A vacuum perspective. J. Vac. Sci. Technol. A 14, 1115 (1996). 
  29. S. Zhou, K. Potzger, G. Zhang, A. Mücklich, F. Eichhorn, N. Schell, R. Grötzschel, B. Schmidt, W. Skorupa, M. Helm, J. Fassbender, and D. Geiger, Structural and magnetic properties of Mn-implanted Si. Phys. Rev. B 75, 085203 (2007). 
  30. Molecular beam epitaxy and heterostructures Vol. E87 (Martinus Nijhoff, 1985). 
  31. P. Hohenberg, and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964). 
  32. W. Kohn, and L. J. Sham, Self-consistent equations including exchange and correlation effects. Phys Rev. 140, A1133 (1965). 
  33. O. Gunnarsson, and Lundqvist, B. I. Exchange and correlation in atoms, molecules, and solids by the spin-densityfunctional formalism. Phys. Rev. B 13, 4274 (1976). 
  34. D. J. Singh, and L. Nordstrom, Planewaves, pseudopotentials, and the LAPW method. (Berlin, Germany, 2005). 
  35. C. Y. Fong, J. E. Pask, and L. H. Yang, Half metallic materials and their properties. (Imperial College Press, 2012). 
  36. J. P. Perdew, and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981). 
  37. D. M. Ceperley, and B. J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980). 
  38. K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama- Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633 (2010). 
  39. U. von Barth, and L. Hedin, A local exchange-correlation potential for the spin polarized case: I. J. Phys. C: Solid State Phys. 5, 1629 (1972). 
  40. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). [PubMed] 
  41. J. Hubbard, Electron correlations in narrow energy bands Proc. Roy. Soc. A 276, 238 (1963). 
  42. S. Picozzi, F. Antoniella, A. Continenza, and A. MoscaConte, Stabilization of half metallicity in Mn-doped silicon upon Ge alloying Phys. Rev. B 70, 165205 (2004). 
  43. A. Stroppa, S. Picozzi, A. Continenza, and A. J. Freeman, Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors. Phys. Rev. B 68, 155203 (2003). 
  44. H. Wu, P. Kratzer, and M. Scheffler, Density-functional theory study of half-metallic heterostructures: interstitial Mn in Si. Phys. Rev. Lett. 98, 117202 (2006). 
  45. W. G. Zhu, Z. Y. Zhang, and E. Kaxiras, Dopant-assisted concentration enhancement of substitutional Mn in Si and Ge. Phys. Rev. Lett. 100, 027205 (2008). 
  46. M. Marsman, J. Paier, A. Stroppa, and G. Kresse, Hybrid functional applied to extended systems. J. of Phys.: Conden. Matte 20, 064201 (2008). 
  47. W. E. Pickett, and H. Eschrig, Half metals: from formal theory to real material issues. J. Phys. Condens. Matter 19, 315203 (2007). 
  48. H. Kino, F. Aryasetiawan, I. Solovyev, T. Miyake, T. Ohno, and K. Terakura, GW study of half metallic electronic structure of La0.7Sr0.3MnO3. Physica B+C 329, 858 (2003). 
  49. L. Damewood, and C. Y. Fong, Local field effects in half metals - A GW study of zincblende CrAs, MnAs, and MnC. Phys. Rev. B 83, 113102 (2011). 
  50. L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem Phys. Rev. 139, A796 (1965). 
  51. M. S. Hybertsen, and S. G. Louie, Electron correlation in semiconductors and insulators: Band gap and quasiparticle energy. Phys. Rev. B 34, 5390 (1986). 
  52. M. Shishkin, and G. Kresse, Self-consistent GW calculations for semiconductors and insulators. Phy. Rev. B 75, 235102 (2007). 
  53. VASP, Institut fur Theoretische Physik of the Technishe Universtat, Wien, Austria. 
  54. G. Kresse, and J. Furthmüller, Efficient iterative scheme for ab-initio total-energy calculations using a plane wavebasis set. Phys. Rev. B 54, 11169 (1996). 
  55. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k. (Technical University, Vienna, Austria) (2001). 
  56. B. J. Austin, V. Heine, and L. J. Sham, General theory of pseudopotentials. Phy. Rev. 127, 276 (1962). Zbl0114.23001
  57. D. R. Hamann, M. Schlüter, and C. Chiang, Norm-conserving pseudopoetnials. Phy. Rev. Lett. 43, 1494 (1979). 
  58. D. Vanderbuilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990). 
  59. P. E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). 
  60. G. Kresse, and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 15 (1996). [Crossref] 
  61. G. Kresse, and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994). 
  62. G. Kresse, and J. Hafner, Ab initio molecular dynamics for liquid metals. Phy. Rev. B 47, 558 (1993). 
  63. H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integration. Phys. Rev. B 13, 5188 (1976). 
  64. M. Shaughnessy, C. Y. Fong, R. Snow, K. Liu, J. E. Pask, and L. H. Yang, Origin of large moment in MnxSi1−x ; x = 0.1%. Appl. Phys. Lett. 95, 022515 (2009). 
  65. M. C. Qian, C. Y. Fong, K. Liu, W. E. Pickett, L. H. Yang, and J. E. Pask, Half metallic digital ferromagnetic heterostructure composed of a δ-doped layer of Mn in Si. Phys. Rev. Lett. 96, 027211 (2006). 
  66. M. Shaughnessy, R. Snow, C. Y. Fong, L. H. Yang, X. S. Chen, and Z. M. Jiang, Studies of singly doping of Mn and Fe in Si to deduce simple guidelines in selecting transition metal elements for growing Si-based spintronic materials. Phys. Rev. B 82, 035202 (2009). 
  67. L. H. Yang, M. Shaughnessy, C. Y. Fong, L. Damewood, and K. Liu, Hole-doped half-Metallic Si-based Mn trilayers. Submitted (2012). 
  68. M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Above room temperature ferromagnetism in Mn-ion implanted Si. Phys. Rev. B 71, 033302 (2005). 
  69. K. Schwarz, CrO2 predicted as a half-metallic ferromagnet. J. Phys. F: Metal Physics 16, L211 (1986). 
  70. C. Y. Fong, M. C. Qian, K. Liu, L. H. Yang, and J. E. Pask, Design of spintronic materials with simple structures. Journal of Nanoscience and Nanotechnology 8, 3652 (2008). 
  71. C. Hordequin, D. Ristoiu, L. Ranno, and J. Pierre, On the cross-over from half-metal to normal ferromagnet in NiMnSb. Eur. Phys. J. B 16, 287 (2000). 
  72. R. K. Kawakami, Johnston-Halperin, E., L. F. Chen, M. Hanson, N. Guebels, J. S. Speck, A. C. Gossard, and D. D. Awschalom, (Ga,Mn)As as a digital ferromagnetic heterostructure. Appl. Phys. Lett. 77, 2379 (2000). 
  73. C. Y. Fong, M. Shaughnessy, R. Snow, and L. H. Yang, Theoretical investigations of defects in a Si-based digital ferromagnetic heterostructure - a spintronic material. Phys. Stat. Solidi C7, 747 (2009). 
  74. M. Leskelä, and M. Ritala, Atomic layer deposition chemistry: Recent developments and future challenges. Angewandte Chemie 42, 5548 (2003). 
  75. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k. Technical University, Vienna, Austria (2001). 
  76. D. J. Monsma, J. C. Lodder, T. J. A. Popma, and B. Dieny, Perpendicular hot electron spin-valve effect in a new magnetic field sensor: The spin-valve transistor Phys. Rev. Lett. 74, 5260 (1995). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.