Euler's Polyhedron Formula
Formalized Mathematics (2008)
- Volume: 16, Issue: 1, page 7-17
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007.
- [2] Jesse Alama. The vector space of subsets of a set based on symmetric difference. Formalized Mathematics, 16(1):1-5, 2008.
- [3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [6] Arne Brøndsted. An Introduction to Convex Polytopes. Graduate Texts in Mathematics. Springer, 1983.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [11] Leonhard Euler. Elementa doctrinae solidorum. Novi Commentarii Academiae Scientarum Petropolitanae, 4:109-140, 1758.
- [12] Branko Grünbaum. Convex Polytopes. Number 221 in Graduate Texts in Mathematics. Springer, 2nd edition, 2003.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [14] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
- [15] Imre Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press, 1976. Edited by John Worrall and Elie Zahar.
- [16] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579-585, 1991.
- [17] Henri Poincaré. Sur la généralisation d'un théorème d'Euler relatif aux polyèdres. Comptes Rendus de Séances de l'Academie des Sciences, 117:144, 1893. Zbl25.1031.03
- [18] Henri Poincaré. Complément à l'analysis situs. Rendiconti del Circolo Matematico di Palermo, 13:285-343, 1899. Zbl30.0435.02
- [19] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
- [20] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
- [21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [24] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
- [25] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
- [26] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [29] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996.