The Rank+Nullity Theorem
Formalized Mathematics (2007)
- Volume: 15, Issue: 3, page 137-142
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topJesse Alama. "The Rank+Nullity Theorem." Formalized Mathematics 15.3 (2007): 137-142. <http://eudml.org/doc/267154>.
@article{JesseAlama2007,
abstract = {The rank+nullity theorem states that, if T is a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W, then dim(V) = rank(T) + nullity(T), where rank(T) = dim(im(T)) and nullity(T) = dim(ker(T)). The proof treated here is standard; see, for example, [14]: take a basis A of ker(T) and extend it to a basis B of V, and then show that dim(im(T)) is equal to |B - A|, and that T is one-to-one on B - A.},
author = {Jesse Alama},
journal = {Formalized Mathematics},
language = {eng},
number = {3},
pages = {137-142},
title = {The Rank+Nullity Theorem},
url = {http://eudml.org/doc/267154},
volume = {15},
year = {2007},
}
TY - JOUR
AU - Jesse Alama
TI - The Rank+Nullity Theorem
JO - Formalized Mathematics
PY - 2007
VL - 15
IS - 3
SP - 137
EP - 142
AB - The rank+nullity theorem states that, if T is a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W, then dim(V) = rank(T) + nullity(T), where rank(T) = dim(im(T)) and nullity(T) = dim(ker(T)). The proof treated here is standard; see, for example, [14]: take a basis A of ker(T) and extend it to a basis B of V, and then show that dim(im(T)) is equal to |B - A|, and that T is one-to-one on B - A.
LA - eng
UR - http://eudml.org/doc/267154
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
- [5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
- [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [14] Serge Lang. Algebra. Springer, 3rd edition, 2005.
- [15] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996.
- [16] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579-585, 1991.
- [17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [20] Andrzej Trybulec. Function domains and Fránkel operator. Formalized Mathematics, 1(3):495-500, 1990.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
- [23] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
- [24] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [25] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
- [26] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
- [27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
- [28] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.
- [29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
- [30] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
- [31] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [35] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996.
Citations in EuDML Documents
top- Jesse Alama, Euler's Polyhedron Formula
- Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Rank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module
- Karol Pąk, Eigenvalues of a Linear Transformation
- Karol Pąk, Jordan Matrix Decomposition
- Karol Pąk, Linear Transformations of Euclidean Topological Spaces. Part II
- Karol Pąk, Linear Map of Matrices
- Karol Pąk, Linear Transformations of Euclidean Topological Spaces
- Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Torsion Part of ℤ-module
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.