Characterization and properties of (Pσ, Q) symmetric and co-symmetric matrices
Special Matrices (2014)
- Volume: 2, Issue: 1, page 106-119, electronic only
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topWilliam F. Trench. "Characterization and properties of (Pσ, Q) symmetric and co-symmetric matrices." Special Matrices 2.1 (2014): 106-119, electronic only. <http://eudml.org/doc/266935>.
@article{WilliamF2014,
abstract = {Let P ∈ ℂmxm and Q ∈ ℂn×n be invertible matrices partitioned as P = [P0 P1 · · · Pk−1] and Q = [Q0 Q1 · · · Qk−1], with P ℓ ∈ ℂm×mℓ and Qℓ ∈ ℂn×nℓ , 0 ≤ ℓ ≤ k − 1. Partition P−1 and Q−1 as [...] where P̂ℓ ∈ ℂmℓ ×m, Q̂ℓ ∈ ℂnℓ×n , P̂ℓPm = δℓmImℓ , and Q̂ℓQm = δℓmInℓ , 0 ≤ ℓ, m ≤ k − 1. Let Zk = \{0, 1, . . . , k − 1\}. We study matrices A = [...] Pσ(ℓ)FℓQℓ and B = [...] QℓGℓPσ(ℓ), where σ : Zk → Zk. Special cases: A = [...] and B = [...] , where Aℓ ∈ ℂd1×d2 and Bℓ ∈ ℂd2×d1, 0 ≤ ℓ ≤ k − 1.},
author = {William F. Trench},
journal = {Special Matrices},
keywords = {(Pσ,Q) symmetric; (Pσ,Q) co-symmetric; symmetric matrices; co-symmetric matrices; invertible matrices},
language = {eng},
number = {1},
pages = {106-119, electronic only},
title = {Characterization and properties of (Pσ, Q) symmetric and co-symmetric matrices},
url = {http://eudml.org/doc/266935},
volume = {2},
year = {2014},
}
TY - JOUR
AU - William F. Trench
TI - Characterization and properties of (Pσ, Q) symmetric and co-symmetric matrices
JO - Special Matrices
PY - 2014
VL - 2
IS - 1
SP - 106
EP - 119, electronic only
AB - Let P ∈ ℂmxm and Q ∈ ℂn×n be invertible matrices partitioned as P = [P0 P1 · · · Pk−1] and Q = [Q0 Q1 · · · Qk−1], with P ℓ ∈ ℂm×mℓ and Qℓ ∈ ℂn×nℓ , 0 ≤ ℓ ≤ k − 1. Partition P−1 and Q−1 as [...] where P̂ℓ ∈ ℂmℓ ×m, Q̂ℓ ∈ ℂnℓ×n , P̂ℓPm = δℓmImℓ , and Q̂ℓQm = δℓmInℓ , 0 ≤ ℓ, m ≤ k − 1. Let Zk = {0, 1, . . . , k − 1}. We study matrices A = [...] Pσ(ℓ)FℓQℓ and B = [...] QℓGℓPσ(ℓ), where σ : Zk → Zk. Special cases: A = [...] and B = [...] , where Aℓ ∈ ℂd1×d2 and Bℓ ∈ ℂd2×d1, 0 ≤ ℓ ≤ k − 1.
LA - eng
KW - (Pσ,Q) symmetric; (Pσ,Q) co-symmetric; symmetric matrices; co-symmetric matrices; invertible matrices
UR - http://eudml.org/doc/266935
ER -
References
top- [1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360-376.[Crossref] Zbl0112.25003
- [2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151-162.[Crossref] Zbl0255.65021
- [3] A. L. Andrew, Solution of equations involving centrosymmetric matrices, Technometrics 15 (1973) 405-407.[Crossref] Zbl0261.65027
- [4] A. L. Andrew, Centrosymmetric matrices, SIAM Rev. 40 (1998) 697-698.[Crossref] Zbl0918.15006
- [5] A. Cantoni, F. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13 (1976), 275-288.[WoS][Crossref] Zbl0326.15007
- [6] H.-C. Chen, A. Sameh, A matrix decomposition method for orthotropic elasticity problems, SIAM J. Matrix Anal. Appl. 10 (1989), 39-64.[Crossref] Zbl0669.73010
- [7] H.-C. Chen, Circulative matrices of degree ϴ, SIAM J. Matrix Anal. Appl. 13 (1992) 1172-1188.[Crossref] Zbl0766.15028
- [8] A. R. Collar, On centrosymmetric and centroskew matrices, Quart. J. Mech. Appl. Math. 15 (1962) 265-281.[Crossref] Zbl0106.01205
- [9] D. Fasino, Circulative properties revisited: Algebraic properties of a generalization of cyclic matrices, Ital. J. Pure Appl. Math 4 (1998) 33-43. Zbl0955.15013
- [10] I. J. Good, The inverse of a centrosymmetric matrix, Technometrics 12 (1970) 925-928.[Crossref] Zbl0194.05903
- [11] G. L. Li, Z. H. Feng, Mirrorsymmetric matrices, their basic properties, and an application on odd/even decomposition of symmetric multiconductor transmission lines, SIAM J. Matrix Anal. Appl. 24 (2002) 78-90.[Crossref] Zbl1015.15015
- [12] D. Tao, M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices, SIAM J. Matrix Anal. Appl. 23 (2002) 885-895.[Crossref] Zbl1002.15011
- [13] W. F. Trench, Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 377 (2004) 207-218.[Crossref] Zbl1046.15028
- [14] W. F. Trench, Characterization and properties of (R, S)-symmetric, (R, S)-skew symmetric, and (R, S)-conjugate matrices, SIAM J. Matrix Anal. Appl. 26 (2005) 748-757.[Crossref] Zbl1080.15022
- [15] W. F. Trench, Characterization and properties of matrices with k-involutory symmetries, Linear Algebra Appl. 429, Issues 8-9 (2008) 2278-2290. Zbl1167.15020
- [16] W. F. Trench, Properties of unilevel block circulants, Linear Algebra Appl. 430 (2009) 2012-2025.[Crossref][WoS] Zbl1217.15039
- [17] W. F. Trench, Characterization and properties of matrices with k-involutory symmetries II, Linear Algebra Appl. 432, (2010) 2282-2797. Zbl1205.15014
- [18] Characterization and properties of (R, S_) commutative matrices. Linear Algebra Appl. 436 (2012) 4261-4278.[WoS] Zbl1246.15021
- [19] M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices SIAM J. Matrix Anal. Appl. 23 (2001/02) 885-895. Zbl1002.15011
- [20] M. Yasuda, A spectral characterization of Hermitian centrosymmetric and Hermitian skew-centrosymmetric K-matrices; SIAM J. Matrix Anal. Appl., 25 (2003) 601-605.[Crossref] Zbl1062.15004
- [21] J. R. Weaver, Centrosymmetric (cross) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly 92 (1985) 711-717. [Crossref] Zbl0619.15021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.