Characterization and properties of (Pσ, Q) symmetric and co-symmetric matrices

William F. Trench

Special Matrices (2014)

  • Volume: 2, Issue: 1, page 106-119, electronic only
  • ISSN: 2300-7451

Abstract

top
Let P ∈ ℂmxm and Q ∈ ℂn×n be invertible matrices partitioned as P = [P0 P1 · · · Pk−1] and Q = [Q0 Q1 · · · Qk−1], with P ℓ ∈ ℂm×mℓ and Qℓ ∈ ℂn×nℓ , 0 ≤ ℓ ≤ k − 1. Partition P−1 and Q−1 as [...] where P̂ℓ ∈ ℂmℓ ×m, Q̂ℓ ∈ ℂnℓ×n , P̂ℓPm = δℓmImℓ , and Q̂ℓQm = δℓmInℓ , 0 ≤ ℓ, m ≤ k − 1. Let Zk = {0, 1, . . . , k − 1}. We study matrices A = [...] Pσ(ℓ)FℓQℓ and B = [...] QℓGℓPσ(ℓ), where σ : Zk → Zk. Special cases: A = [...] and B = [...] , where Aℓ ∈ ℂd1×d2 and Bℓ ∈ ℂd2×d1, 0 ≤ ℓ ≤ k − 1.

How to cite

top

William F. Trench. "Characterization and properties of (Pσ, Q) symmetric and co-symmetric matrices." Special Matrices 2.1 (2014): 106-119, electronic only. <http://eudml.org/doc/266935>.

@article{WilliamF2014,
abstract = {Let P ∈ ℂmxm and Q ∈ ℂn×n be invertible matrices partitioned as P = [P0 P1 · · · Pk−1] and Q = [Q0 Q1 · · · Qk−1], with P ℓ ∈ ℂm×mℓ and Qℓ ∈ ℂn×nℓ , 0 ≤ ℓ ≤ k − 1. Partition P−1 and Q−1 as [...] where P̂ℓ ∈ ℂmℓ ×m, Q̂ℓ ∈ ℂnℓ×n , P̂ℓPm = δℓmImℓ , and Q̂ℓQm = δℓmInℓ , 0 ≤ ℓ, m ≤ k − 1. Let Zk = \{0, 1, . . . , k − 1\}. We study matrices A = [...] Pσ(ℓ)FℓQℓ and B = [...] QℓGℓPσ(ℓ), where σ : Zk → Zk. Special cases: A = [...] and B = [...] , where Aℓ ∈ ℂd1×d2 and Bℓ ∈ ℂd2×d1, 0 ≤ ℓ ≤ k − 1.},
author = {William F. Trench},
journal = {Special Matrices},
keywords = {(Pσ,Q) symmetric; (Pσ,Q) co-symmetric; symmetric matrices; co-symmetric matrices; invertible matrices},
language = {eng},
number = {1},
pages = {106-119, electronic only},
title = {Characterization and properties of (Pσ, Q) symmetric and co-symmetric matrices},
url = {http://eudml.org/doc/266935},
volume = {2},
year = {2014},
}

TY - JOUR
AU - William F. Trench
TI - Characterization and properties of (Pσ, Q) symmetric and co-symmetric matrices
JO - Special Matrices
PY - 2014
VL - 2
IS - 1
SP - 106
EP - 119, electronic only
AB - Let P ∈ ℂmxm and Q ∈ ℂn×n be invertible matrices partitioned as P = [P0 P1 · · · Pk−1] and Q = [Q0 Q1 · · · Qk−1], with P ℓ ∈ ℂm×mℓ and Qℓ ∈ ℂn×nℓ , 0 ≤ ℓ ≤ k − 1. Partition P−1 and Q−1 as [...] where P̂ℓ ∈ ℂmℓ ×m, Q̂ℓ ∈ ℂnℓ×n , P̂ℓPm = δℓmImℓ , and Q̂ℓQm = δℓmInℓ , 0 ≤ ℓ, m ≤ k − 1. Let Zk = {0, 1, . . . , k − 1}. We study matrices A = [...] Pσ(ℓ)FℓQℓ and B = [...] QℓGℓPσ(ℓ), where σ : Zk → Zk. Special cases: A = [...] and B = [...] , where Aℓ ∈ ℂd1×d2 and Bℓ ∈ ℂd2×d1, 0 ≤ ℓ ≤ k − 1.
LA - eng
KW - (Pσ,Q) symmetric; (Pσ,Q) co-symmetric; symmetric matrices; co-symmetric matrices; invertible matrices
UR - http://eudml.org/doc/266935
ER -

References

top
  1. [1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360-376.[Crossref] Zbl0112.25003
  2. [2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151-162.[Crossref] Zbl0255.65021
  3. [3] A. L. Andrew, Solution of equations involving centrosymmetric matrices, Technometrics 15 (1973) 405-407.[Crossref] Zbl0261.65027
  4. [4] A. L. Andrew, Centrosymmetric matrices, SIAM Rev. 40 (1998) 697-698.[Crossref] Zbl0918.15006
  5. [5] A. Cantoni, F. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13 (1976), 275-288.[WoS][Crossref] Zbl0326.15007
  6. [6] H.-C. Chen, A. Sameh, A matrix decomposition method for orthotropic elasticity problems, SIAM J. Matrix Anal. Appl. 10 (1989), 39-64.[Crossref] Zbl0669.73010
  7. [7] H.-C. Chen, Circulative matrices of degree ϴ, SIAM J. Matrix Anal. Appl. 13 (1992) 1172-1188.[Crossref] Zbl0766.15028
  8. [8] A. R. Collar, On centrosymmetric and centroskew matrices, Quart. J. Mech. Appl. Math. 15 (1962) 265-281.[Crossref] Zbl0106.01205
  9. [9] D. Fasino, Circulative properties revisited: Algebraic properties of a generalization of cyclic matrices, Ital. J. Pure Appl. Math 4 (1998) 33-43. Zbl0955.15013
  10. [10] I. J. Good, The inverse of a centrosymmetric matrix, Technometrics 12 (1970) 925-928.[Crossref] Zbl0194.05903
  11. [11] G. L. Li, Z. H. Feng, Mirrorsymmetric matrices, their basic properties, and an application on odd/even decomposition of symmetric multiconductor transmission lines, SIAM J. Matrix Anal. Appl. 24 (2002) 78-90.[Crossref] Zbl1015.15015
  12. [12] D. Tao, M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices, SIAM J. Matrix Anal. Appl. 23 (2002) 885-895.[Crossref] Zbl1002.15011
  13. [13] W. F. Trench, Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 377 (2004) 207-218.[Crossref] Zbl1046.15028
  14. [14] W. F. Trench, Characterization and properties of (R, S)-symmetric, (R, S)-skew symmetric, and (R, S)-conjugate matrices, SIAM J. Matrix Anal. Appl. 26 (2005) 748-757.[Crossref] Zbl1080.15022
  15. [15] W. F. Trench, Characterization and properties of matrices with k-involutory symmetries, Linear Algebra Appl. 429, Issues 8-9 (2008) 2278-2290. Zbl1167.15020
  16. [16] W. F. Trench, Properties of unilevel block circulants, Linear Algebra Appl. 430 (2009) 2012-2025.[Crossref][WoS] Zbl1217.15039
  17. [17] W. F. Trench, Characterization and properties of matrices with k-involutory symmetries II, Linear Algebra Appl. 432, (2010) 2282-2797. Zbl1205.15014
  18. [18] Characterization and properties of (R, S_) commutative matrices. Linear Algebra Appl. 436 (2012) 4261-4278.[WoS] Zbl1246.15021
  19. [19] M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices SIAM J. Matrix Anal. Appl. 23 (2001/02) 885-895. Zbl1002.15011
  20. [20] M. Yasuda, A spectral characterization of Hermitian centrosymmetric and Hermitian skew-centrosymmetric K-matrices; SIAM J. Matrix Anal. Appl., 25 (2003) 601-605.[Crossref] Zbl1062.15004
  21. [21] J. R. Weaver, Centrosymmetric (cross) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly 92 (1985) 711-717. [Crossref] Zbl0619.15021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.