Compact Global Chaotic Attractors of Discrete Control Systems
Nonautonomous Dynamical Systems (2014)
- Volume: 1, page 10-25, electronic only
- ISSN: 2353-0626
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] V. M. Alekseev, Symbolic Dynamics, The 11th Mathematical School. Kiev, Naukova Dumka, 1986.
- [2] M. F. Barnsley, Fractals everywhere, New York, Academic Press, 1988.
- [3] N. A. Bobylev, S. V. Emel’yanov, S. K. Korovin, Attractors of Discrete Controlled Systems in Metric Spaces. Computational Mathematics and Modeling, 11 (2000), 321–326; Translated from Prikladnaya Mathematika i Informatika, 3, (1999), 5–10.
- [4] V. A. Bondarenko, V. L. Dolnikov, Fractal Image Compression by The Barnsley-Sloan Method, Automation and Remote Control, 55, (1994), 623–629; Translated from Avtomatika i Telemekhanika, 5, (1994), 12–20.
- [5] H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert, Math.Studies, 5, North Holland, 1973. Zbl0252.47055
- [6] D. N. Cheban, Global Attractors of Nonautonomous Dissipstive Dynamical Systems. Interdisciplinary Mathematical Sciences, 1, River Edge, New Jersey, World Scientific, 2004.
- [7] D. N. Cheban, Compact Global Attractors of Control Systems. Journal of Dynamical and Control Systems, 16 (2010), 23–44. [WoS][Crossref] Zbl1203.37027
- [8] D. N. Cheban, Global Attractors of Set-Valued Dynamical and Control Systems. Nova Science Publishers Inc, New York, 2010. Zbl1203.37027
- [9] D. N. Cheban, C. Mammana, Global Compact Attractors of Discrete Inclusions. Nonlinear Analyses: TMA, 65, (2006), 1669–1687. Zbl1103.37008
- [10] D. N. Cheban, B. Schmalfuss, Invariant Manifolds, Global Attractors, Almost Automrphic and Almost Periodic Solutions of Non-Autonomous Differential Equations. J. Math. Anal. Appl., 340, (2008), 374–393. [WoS] Zbl1128.37009
- [11] L. Gurvits, Stability of Discrete Linear Inclusion. Linear Algebra Appl., 231 (1995), 47–85. Zbl0845.68067
- [12] B. M. Levitan, V. V. Zhikov, Almost Periodic Functions and Differential Equations. Moscow State University Press, 1978. (in Russian) [English translation in Cambridge Univ. Press, Cambridge, 1982.] Zbl0414.43008
- [13] J. L. Lions, Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969.
- [14] C. Robinson, Dynamical Systems: Stabilty, Symbolic Dynamics and Chaos (Studies in Advanced Mathematics). Boca Raton Florida, CRC Press, 1995.
- [15] G. R. Sell, Topological Dynamics and Ordinary Differential Equations. Van Nostrand-Reinhold, London, 1971. Zbl0212.29202
- [16] B. A. Shcherbakov, Topological Dynamics and Poisson’s Stability of Solutions of Differential Equations. Kishinev, Shtiintsa, 1972 (in Russian). Zbl0256.34062
- [17] K. S. Sibirskii, A. S. Shube, Semidynamical Systems. Stiintsa, Kishinev 1987 (in Russian).