# Integrability Formulas. Part I

Formalized Mathematics (2010)

- Volume: 18, Issue: 1, page 27-37
- ISSN: 1426-2630

## Access Full Article

top## Abstract

top## How to cite

topBo Li, and Na Ma. "Integrability Formulas. Part I." Formalized Mathematics 18.1 (2010): 27-37. <http://eudml.org/doc/266956>.

@article{BoLi2010,

abstract = {In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, and the polynomial function.},

author = {Bo Li, Na Ma},

journal = {Formalized Mathematics},

language = {eng},

number = {1},

pages = {27-37},

title = {Integrability Formulas. Part I},

url = {http://eudml.org/doc/266956},

volume = {18},

year = {2010},

}

TY - JOUR

AU - Bo Li

AU - Na Ma

TI - Integrability Formulas. Part I

JO - Formalized Mathematics

PY - 2010

VL - 18

IS - 1

SP - 27

EP - 37

AB - In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, and the polynomial function.

LA - eng

UR - http://eudml.org/doc/266956

ER -

## References

top- [1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [2] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
- [3] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [5] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005. Zbl1276.26026
- [6] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
- [7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
- [8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [10] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008, doi:10.2478/v10037-008-0021-3.[Crossref]
- [11] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.
- [12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [14] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
- [15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [18] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.