Inverse Trigonometric Functions Arctan and Arccot
Formalized Mathematics (2008)
- Volume: 16, Issue: 2, page 147-158
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topXiquan Liang, and Bing Xie. "Inverse Trigonometric Functions Arctan and Arccot." Formalized Mathematics 16.2 (2008): 147-158. <http://eudml.org/doc/266619>.
@article{XiquanLiang2008,
abstract = {This article describes definitions of inverse trigonometric functions arctan, arccot and their main properties, as well as several differentiation formulas of arctan and arccot.MML identifier: SIN COS9, version: 7.8.10 4.100.1011},
author = {Xiquan Liang, Bing Xie},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {147-158},
title = {Inverse Trigonometric Functions Arctan and Arccot},
url = {http://eudml.org/doc/266619},
volume = {16},
year = {2008},
}
TY - JOUR
AU - Xiquan Liang
AU - Bing Xie
TI - Inverse Trigonometric Functions Arctan and Arccot
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 2
SP - 147
EP - 158
AB - This article describes definitions of inverse trigonometric functions arctan, arccot and their main properties, as well as several differentiation formulas of arctan and arccot.MML identifier: SIN COS9, version: 7.8.10 4.100.1011
LA - eng
UR - http://eudml.org/doc/266619
ER -
References
top- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [4] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
- [7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [8] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
- [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [10] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.
- [11] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
- [12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [14] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
- [15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
Citations in EuDML Documents
top- Bo Li, Na Ma, Integrability Formulas. Part I
- Bo Li, Na Ma, Xiquan Liang, Integrability Formulas. Part II
- Bo Li, Yanping Zhuang, Yanhong Men, Xiquan Liang, Several Integrability Formulas of Special Functions. Part II
- Bo Li, Yanhong Men, Basic Properties of Even and Odd Functions
- Fuguo Ge, Bing Xie, Several Differentiation Formulas of Special Functions. Part VII
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.