Inverse Trigonometric Functions Arctan and Arccot

Xiquan Liang; Bing Xie

Formalized Mathematics (2008)

  • Volume: 16, Issue: 2, page 147-158
  • ISSN: 1426-2630

Abstract

top
This article describes definitions of inverse trigonometric functions arctan, arccot and their main properties, as well as several differentiation formulas of arctan and arccot.MML identifier: SIN COS9, version: 7.8.10 4.100.1011

How to cite

top

Xiquan Liang, and Bing Xie. "Inverse Trigonometric Functions Arctan and Arccot." Formalized Mathematics 16.2 (2008): 147-158. <http://eudml.org/doc/266619>.

@article{XiquanLiang2008,
abstract = {This article describes definitions of inverse trigonometric functions arctan, arccot and their main properties, as well as several differentiation formulas of arctan and arccot.MML identifier: SIN COS9, version: 7.8.10 4.100.1011},
author = {Xiquan Liang, Bing Xie},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {147-158},
title = {Inverse Trigonometric Functions Arctan and Arccot},
url = {http://eudml.org/doc/266619},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Xiquan Liang
AU - Bing Xie
TI - Inverse Trigonometric Functions Arctan and Arccot
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 2
SP - 147
EP - 158
AB - This article describes definitions of inverse trigonometric functions arctan, arccot and their main properties, as well as several differentiation formulas of arctan and arccot.MML identifier: SIN COS9, version: 7.8.10 4.100.1011
LA - eng
UR - http://eudml.org/doc/266619
ER -

References

top
  1. [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  2. [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  3. [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  4. [4] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004. 
  5. [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  6. [6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990. 
  7. [7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990. 
  8. [8] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990. 
  9. [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  10. [10] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991. 
  11. [11] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990. 
  12. [12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990. 
  13. [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  14. [14] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004. 
  15. [15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. 
  16. [16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  17. [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  18. [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  19. [19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.