On L p Space Formed by Real-Valued Partial Functions
Yasushige Watase; Noboru Endou; Yasunari Shidama
Formalized Mathematics (2010)
- Volume: 18, Issue: 3, page 159-169
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topYasushige Watase, Noboru Endou, and Yasunari Shidama. " On L p Space Formed by Real-Valued Partial Functions ." Formalized Mathematics 18.3 (2010): 159-169. <http://eudml.org/doc/266976>.
@article{YasushigeWatase2010,
abstract = {This article is the continuation of [31]. We define the set of Lp integrable functions - the set of all partial functions whose absolute value raised to the p-th power is integrable. We show that Lp integrable functions form the Lp space. We also prove Minkowski's inequality, Hölder's inequality and that Lp space is Banach space ([15], [27]).},
author = {Yasushige Watase, Noboru Endou, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {3},
pages = {159-169},
title = { On L p Space Formed by Real-Valued Partial Functions },
url = {http://eudml.org/doc/266976},
volume = {18},
year = {2010},
}
TY - JOUR
AU - Yasushige Watase
AU - Noboru Endou
AU - Yasunari Shidama
TI - On L p Space Formed by Real-Valued Partial Functions
JO - Formalized Mathematics
PY - 2010
VL - 18
IS - 3
SP - 159
EP - 169
AB - This article is the continuation of [31]. We define the set of Lp integrable functions - the set of all partial functions whose absolute value raised to the p-th power is integrable. We show that Lp integrable functions form the Lp space. We also prove Minkowski's inequality, Hölder's inequality and that Lp space is Banach space ([15], [27]).
LA - eng
UR - http://eudml.org/doc/266976
ER -
References
top- [1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565-582, 2001.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
- [5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
- [6] Józef Białas. The s-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
- [7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [8] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [13] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006, doi:10.2478/v10037-006-0008-x.[Crossref]
- [14] Noboru Endou, Yasunari Shidama, and Keiko Narita. Egoroff's theorem. Formalized Mathematics, 16(1):57-63, 2008, doi:10.2478/v10037-008-0009-z.[Crossref] Zbl1298.46005
- [15] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.
- [16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [17] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [19] Keiko Narita, Noboru Endou, and Yasunari Shidama. Integral of complex-valued measurable function. Formalized Mathematics, 16(4):319-324, 2008, doi:10.2478/v10037-008-0039-6.[Crossref] Zbl1298.26030
- [20] Keiko Narita, Noboru Endou, and Yasunari Shidama. Lebesgue's convergence theorem of complex-valued function. Formalized Mathematics, 17(2):137-145, 2009, doi: 10.2478/v10037-009-0015-9.[Crossref] Zbl1298.26030
- [21] Andrzej Nędzusiak. s-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
- [22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [23] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
- [24] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [25] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
- [26] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.
- [27] Walter Rudin. Real and Complex Analysis. Mc Graw-Hill, Inc., 1974.
- [28] Yasunari Shidama and Noboru Endou. Integral of real-valued measurable function. Formalized Mathematics, 14(4):143-152, 2006, doi:10.2478/v10037-006-0018-8.[Crossref] Zbl1298.26030
- [29] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [31] Yasushige Watase, Noboru Endou, and Yasunari Shidama. On L1 space formed by real-valued partial functions. Formalized Mathematics, 16(4):361-369, 2008, doi:10.2478/v10037-008-0044-9.[Crossref] Zbl1283.46024
- [32] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.