Gauss Lemma and Law of Quadratic Reciprocity
Li Yan; Xiquan Liang; Junjie Zhao
Formalized Mathematics (2008)
- Volume: 16, Issue: 1, page 23-28
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topLi Yan, Xiquan Liang, and Junjie Zhao. "Gauss Lemma and Law of Quadratic Reciprocity." Formalized Mathematics 16.1 (2008): 23-28. <http://eudml.org/doc/266986>.
@article{LiYan2008,
abstract = {In this paper, we defined the quadratic residue and proved its fundamental properties on the base of some useful theorems. Then we defined the Legendre symbol and proved its useful theorems [14], [12]. Finally, Gauss Lemma and Law of Quadratic Reciprocity are proven.MML identifier: INT 5, version: 7.8.05 4.89.993},
author = {Li Yan, Xiquan Liang, Junjie Zhao},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {23-28},
title = {Gauss Lemma and Law of Quadratic Reciprocity},
url = {http://eudml.org/doc/266986},
volume = {16},
year = {2008},
}
TY - JOUR
AU - Li Yan
AU - Xiquan Liang
AU - Junjie Zhao
TI - Gauss Lemma and Law of Quadratic Reciprocity
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 1
SP - 23
EP - 28
AB - In this paper, we defined the quadratic residue and proved its fundamental properties on the base of some useful theorems. Then we defined the Legendre symbol and proved its useful theorems [14], [12]. Finally, Gauss Lemma and Law of Quadratic Reciprocity are proven.MML identifier: INT 5, version: 7.8.05 4.89.993
LA - eng
UR - http://eudml.org/doc/266986
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [12] Zhang Dexin. Integer Theory. Science Publication, China, 1965.
- [13] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.
- [14] Hua Loo Keng. Introduction to Number Theory. Beijing Science Publication, China, 1957.
- [15] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.
- [16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
- [17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
- [18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
- [19] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
- [20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [23] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.