Gauss Lemma and Law of Quadratic Reciprocity

Li Yan; Xiquan Liang; Junjie Zhao

Formalized Mathematics (2008)

  • Volume: 16, Issue: 1, page 23-28
  • ISSN: 1426-2630

Abstract

top
In this paper, we defined the quadratic residue and proved its fundamental properties on the base of some useful theorems. Then we defined the Legendre symbol and proved its useful theorems [14], [12]. Finally, Gauss Lemma and Law of Quadratic Reciprocity are proven.MML identifier: INT 5, version: 7.8.05 4.89.993

How to cite

top

Li Yan, Xiquan Liang, and Junjie Zhao. "Gauss Lemma and Law of Quadratic Reciprocity." Formalized Mathematics 16.1 (2008): 23-28. <http://eudml.org/doc/266986>.

@article{LiYan2008,
abstract = {In this paper, we defined the quadratic residue and proved its fundamental properties on the base of some useful theorems. Then we defined the Legendre symbol and proved its useful theorems [14], [12]. Finally, Gauss Lemma and Law of Quadratic Reciprocity are proven.MML identifier: INT 5, version: 7.8.05 4.89.993},
author = {Li Yan, Xiquan Liang, Junjie Zhao},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {23-28},
title = {Gauss Lemma and Law of Quadratic Reciprocity},
url = {http://eudml.org/doc/266986},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Li Yan
AU - Xiquan Liang
AU - Junjie Zhao
TI - Gauss Lemma and Law of Quadratic Reciprocity
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 1
SP - 23
EP - 28
AB - In this paper, we defined the quadratic residue and proved its fundamental properties on the base of some useful theorems. Then we defined the Legendre symbol and proved its useful theorems [14], [12]. Finally, Gauss Lemma and Law of Quadratic Reciprocity are proven.MML identifier: INT 5, version: 7.8.05 4.89.993
LA - eng
UR - http://eudml.org/doc/266986
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  3. [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990. 
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  5. [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  6. [6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  7. [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  8. [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  9. [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  10. [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990. 
  11. [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  12. [12] Zhang Dexin. Integer Theory. Science Publication, China, 1965. 
  13. [13] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998. 
  14. [14] Hua Loo Keng. Introduction to Number Theory. Beijing Science Publication, China, 1957. 
  15. [15] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997. 
  16. [16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990. 
  17. [17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990. 
  18. [18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993. 
  19. [19] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991. 
  20. [20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  21. [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  22. [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  23. [23] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.