Proth Numbers
Formalized Mathematics (2014)
- Volume: 22, Issue: 2, page 111-118
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topChristoph Schwarzweller. "Proth Numbers." Formalized Mathematics 22.2 (2014): 111-118. <http://eudml.org/doc/268757>.
@article{ChristophSchwarzweller2014,
abstract = {In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.},
author = {Christoph Schwarzweller},
journal = {Formalized Mathematics},
keywords = {prime numbers; Pocklington’s theorem; Proth’s theorem; Pepin’s theorem},
language = {eng},
number = {2},
pages = {111-118},
title = {Proth Numbers},
url = {http://eudml.org/doc/268757},
volume = {22},
year = {2014},
}
TY - JOUR
AU - Christoph Schwarzweller
TI - Proth Numbers
JO - Formalized Mathematics
PY - 2014
VL - 22
IS - 2
SP - 111
EP - 118
AB - In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.
LA - eng
KW - prime numbers; Pocklington’s theorem; Proth’s theorem; Pepin’s theorem
UR - http://eudml.org/doc/268757
ER -
References
top- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990. Zbl06213858
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] J. Buchmann and V. Müller. Primality testing. 1992.
- [4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [5] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin’s test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317–321, 1998.
- [6] Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Operations of points on elliptic curve in projective coordinates. Formalized Mathematics, 20(1):87–95, 2012. doi:10.2478/v10037-012-0012-2.[Crossref] Zbl1276.11200
- [7] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841–845, 1990.
- [8] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [9] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.
- [10] Hiroyuki Okazaki and Yasunari Shidama. Uniqueness of factoring an integer and multiplicative group Z/pZ∗. Formalized Mathematics, 16(2):103–107, 2008. doi:10.2478/v10037- 008-0015-1.[Crossref]
- [11] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [13] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [14] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [16] Li Yan, Xiquan Liang, and Junjie Zhao. Gauss lemma and law of quadratic reciprocity. Formalized Mathematics, 16(1):23–28, 2008. doi:10.2478/v10037-008-0004-4.[Crossref]
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.