# The n -Point Condition and Rough CAT(0)

Stephen M. Buckley; Bruce Hanson

Analysis and Geometry in Metric Spaces (2013)

- Volume: 1, page 58-68
- ISSN: 2299-3274

## Access Full Article

top## Abstract

top## How to cite

topStephen M. Buckley, and Bruce Hanson. " The n -Point Condition and Rough CAT(0) ." Analysis and Geometry in Metric Spaces 1 (2013): 58-68. <http://eudml.org/doc/266990>.

@article{StephenM2013,

abstract = {We show that for n ≥ 5, a length space (X; d) satisfies a rough n-point condition if and only if it is rough CAT(0). As a consequence, we show that the class of rough CAT(0) spaces is closed under reasonably general limit processes such as pointed and unpointed Gromov-Hausdorff limits and ultralimits.},

author = {Stephen M. Buckley, Bruce Hanson},

journal = {Analysis and Geometry in Metric Spaces},

keywords = {CAT(0) space; rough CAT(0) space; Gromov hyperbolic space; Gromov-Hausdorff limit; ultralimit; space; rough space},

language = {eng},

pages = {58-68},

title = { The n -Point Condition and Rough CAT(0) },

url = {http://eudml.org/doc/266990},

volume = {1},

year = {2013},

}

TY - JOUR

AU - Stephen M. Buckley

AU - Bruce Hanson

TI - The n -Point Condition and Rough CAT(0)

JO - Analysis and Geometry in Metric Spaces

PY - 2013

VL - 1

SP - 58

EP - 68

AB - We show that for n ≥ 5, a length space (X; d) satisfies a rough n-point condition if and only if it is rough CAT(0). As a consequence, we show that the class of rough CAT(0) spaces is closed under reasonably general limit processes such as pointed and unpointed Gromov-Hausdorff limits and ultralimits.

LA - eng

KW - CAT(0) space; rough CAT(0) space; Gromov hyperbolic space; Gromov-Hausdorff limit; ultralimit; space; rough space

UR - http://eudml.org/doc/266990

ER -

## References

top- S.M. Buckley and K. Falk, Rough CAT(0) Spaces, Bull. Math. Soc. Sci. Math. Roumanie 55 (103) (2012), 3–33. Zbl1265.51011
- S.M. Buckley and K. Falk, The boundary at infinity of a rough CAT(0) space, preprint. (Available at http://arxiv. org/pdf/1209.6557.pdf) Zbl1296.51023
- M.R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature. Springer-Verlag, New York 1999. Zbl0988.53001
- M. Coornaert, T. Delzant, and A. Papadopoulos, ‘Géometrie et théorie des groupes’, Lecture Notes in Mathematics 1441, Springer, Berlin, 1990. Zbl0727.20018
- T. Delzant and M. Gromov, Courbure mésoscopique et théorie de la toute petite simplification, J. Topology 1 (2008), 804–836.
- E. Ghys and P. de la Harpe (Eds.), ‘Sur les groupes hyperboliques d’aprés Mikhael Gromov’, Progress in Math. 38, Birkhäuser, Boston, 1990. Zbl0731.20025
- M. Gromov, Mesoscopic curvature and hyperbolicity in ‘Global differential geometry: the mathematical legacy of Alfred Gray’, 58–69, Contemp. Math. 288, Amer. Math. Soc., Providence, RI, 2001. Zbl1006.53036
- G. Kasparov and G. Skandalis, Groupes ‘boliques’ et conjecture de Novikov, Comptes Rendus 158 (1994), 815–820. Zbl0839.19003
- G. Kasparov and G. Skandalis, Groups acting properly on‘bolic’ spaces and the Novikov conjecture, Ann. Math. 158 (2003), 165–206. Zbl1029.19003
- J. Väisälä, Gromov hyperbolic spaces, Expo. Math. 23 (2005), no. 3, 187–231. Zbl1087.53039

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.