The Boundary at Infinity of a Rough CAT(0) Space

S.M. Buckley; K. Falk

Analysis and Geometry in Metric Spaces (2014)

  • Volume: 2, Issue: 1, page 53-80, electronic only
  • ISSN: 2299-3274

Abstract

top
We develop the boundary theory of rough CAT(0) spaces, a class of length spaces that contains both Gromov hyperbolic length spaces and CAT(0) spaces. The resulting theory generalizes the common features of the Gromov boundary of a Gromov hyperbolic length space and the ideal boundary of a complete CAT(0) space. It is not assumed that the spaces are geodesic or proper

How to cite

top

S.M. Buckley, and K. Falk. "The Boundary at Infinity of a Rough CAT(0) Space." Analysis and Geometry in Metric Spaces 2.1 (2014): 53-80, electronic only. <http://eudml.org/doc/267074>.

@article{S2014,
abstract = {We develop the boundary theory of rough CAT(0) spaces, a class of length spaces that contains both Gromov hyperbolic length spaces and CAT(0) spaces. The resulting theory generalizes the common features of the Gromov boundary of a Gromov hyperbolic length space and the ideal boundary of a complete CAT(0) space. It is not assumed that the spaces are geodesic or proper},
author = {S.M. Buckley, K. Falk},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {CAT(0) space; Gromov hyperbolic space; rough CAT(0) space; ideal boundary; Gromov boundary; bouquet boundary; space; rough space},
language = {eng},
number = {1},
pages = {53-80, electronic only},
title = {The Boundary at Infinity of a Rough CAT(0) Space},
url = {http://eudml.org/doc/267074},
volume = {2},
year = {2014},
}

TY - JOUR
AU - S.M. Buckley
AU - K. Falk
TI - The Boundary at Infinity of a Rough CAT(0) Space
JO - Analysis and Geometry in Metric Spaces
PY - 2014
VL - 2
IS - 1
SP - 53
EP - 80, electronic only
AB - We develop the boundary theory of rough CAT(0) spaces, a class of length spaces that contains both Gromov hyperbolic length spaces and CAT(0) spaces. The resulting theory generalizes the common features of the Gromov boundary of a Gromov hyperbolic length space and the ideal boundary of a complete CAT(0) space. It is not assumed that the spaces are geodesic or proper
LA - eng
KW - CAT(0) space; Gromov hyperbolic space; rough CAT(0) space; ideal boundary; Gromov boundary; bouquet boundary; space; rough space
UR - http://eudml.org/doc/267074
ER -

References

top
  1. [1] M.R. Bridson and A. Haefliger, ‘Metric spaces of non-positive curvature’, Springer-Verlag, Berlin, 1999. Zbl0988.53001
  2. [2] K. Brown, ‘Buildings’, Springer-Verlag, Berlin, 1989. 
  3. [3] S.M. Buckley and K. Falk, Rough CAT(0) spaces, Bull. Math. Soc. Sci. Math. Roumanie 55 (103) (2012), 3-33. Zbl1265.51011
  4. [4] S.M. Buckley and K. Falk, Natural maps between CAT(0) boundaries, New York J. Math. 19 (2013), 13-22. Zbl1279.51005
  5. [5] S.M. Buckley and B. Hanson, The n-point condition and rough CAT(0), Anal. Geom. Metric Spaces 1 (2012), 58-68. Zbl1262.30073
  6. [6] S.M. Buckley and S.L. Kokkendorff, Comparing the ideal and Floyd boundaries of a metric space, Trans. Amer.Math. Soc. 361 (2009), 715-734. Zbl1182.54030
  7. [7] M. Coornaert, T. Delzant, and A. Papadopoulos, ‘Géometrie et théorie des groupes’, Lecture Notes in Mathematics 1441, Springer, Berlin, 1990. Zbl0727.20018
  8. [8] T. Delzant and M. Gromov, Courbure mésoscopique et théorie de la toute petite simpliffcation, J. Topology 1 (2008), 804-836. 
  9. [9] E. Ghys and P. de la Harpe (Eds.), ‘Sur les groupes hyperboliques d’aprés Mikhael Gromov’, Progress in Mathematics 83, Birkhäuser, Boston, 1990. Zbl0731.20025
  10. [10] M. Gromov,Mesoscopic curvature and hyperbolicity in ‘Global differential geometry: themathematical legacy of Alfred Gray’, 58-69, Contemp. Math. 288, Amer. Math. Soc., Providence, RI, 2001. 
  11. [11] I. Kapovich and N. Benakli, Boundaries of hyperbolic groups in ‘Combinatorial and geometric group theory’, 39-92, Contemp. Math. 296, Amer. Math. Soc., Providence, RI, 2002. Zbl1044.20028
  12. [12] G. Kasparov and G. Skandalis, Groupes ‘boliques’ et conjecture de Novikov, Comptes Rendus 158 (1994), 815-820. 
  13. [13] G. Kasparov and G. Skandalis, Groups acting properly on ‘bolic’ spaces and the Novikov conjecture, Ann. Math. 158 (2003), 165-206. Zbl1029.19003
  14. [14] J. Väisälä, Gromov hyperbolic spaces, Expo. Math. 23 (2005), no. 3, 187-231. Zbl1087.53039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.