The Real Vector Spaces of Finite Sequences are Finite Dimensional
Yatsuka Nakamura; Artur Korniłowicz; Nagato Oya; Yasunari Shidama
Formalized Mathematics (2009)
- Volume: 17, Issue: 1, page 1-9
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topYatsuka Nakamura, et al. "The Real Vector Spaces of Finite Sequences are Finite Dimensional." Formalized Mathematics 17.1 (2009): 1-9. <http://eudml.org/doc/267003>.
@article{YatsukaNakamura2009,
abstract = {In this paper we show the finite dimensionality of real linear spaces with their carriers equal Rn. We also give the standard basis of such spaces. For the set Rn we introduce the concepts of linear manifold subsets and orthogonal subsets. The cardinality of orthonormal basis of discussed spaces is proved to equal n.MML identifier: EUCLID 7, version: 7.11.01 4.117.1046},
author = {Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {1-9},
title = {The Real Vector Spaces of Finite Sequences are Finite Dimensional},
url = {http://eudml.org/doc/267003},
volume = {17},
year = {2009},
}
TY - JOUR
AU - Yatsuka Nakamura
AU - Artur Korniłowicz
AU - Nagato Oya
AU - Yasunari Shidama
TI - The Real Vector Spaces of Finite Sequences are Finite Dimensional
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 1
SP - 1
EP - 9
AB - In this paper we show the finite dimensionality of real linear spaces with their carriers equal Rn. We also give the standard basis of such spaces. For the set Rn we introduce the concepts of linear manifold subsets and orthogonal subsets. The cardinality of orthonormal basis of discussed spaces is proved to equal n.MML identifier: EUCLID 7, version: 7.11.01 4.117.1046
LA - eng
UR - http://eudml.org/doc/267003
ER -
References
top- [1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [5] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [11] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
- [12] Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. Formalized Mathematics, 6(3):411-415, 1997.
- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [14] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [15] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.
- [16] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Linear combinations in real unitary space. Formalized Mathematics, 11(1):17-22, 2003.
- [17] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
- [18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [19] Yatsuka Nakamura. Sorting operators for finite sequences. Formalized Mathematics, 12(1):1-4, 2004. Zbl0264.94018
- [20] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.
- [21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [23] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics, 15(3):127-136, 2007, doi:10.2478/v10037-007-00014-7.[Crossref]
- [24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [26] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
- [27] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
- [28] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
- [29] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
- [30] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [34] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471-474, 2001.
Citations in EuDML Documents
top- Marco Riccardi, Planes and Spheres as Topological Manifolds. Stereographic Projection
- Takao Inoué, Noboru Endou, Yasunari Shidama, Differentiation of Vector-Valued Functions on n -Dimensional Real Normed Linear Spaces
- Takao Inoué, Adam Naumowicz, Noboru Endou, Yasunari Shidama, Partial Differentiation of Vector-Valued Functions on n -Dimensional Real Normed Linear Spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.