Planes and Spheres as Topological Manifolds. Stereographic Projection
Formalized Mathematics (2012)
- Volume: 20, Issue: 1, page 41-45
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topMarco Riccardi. "Planes and Spheres as Topological Manifolds. Stereographic Projection." Formalized Mathematics 20.1 (2012): 41-45. <http://eudml.org/doc/267814>.
@article{MarcoRiccardi2012,
abstract = {The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].},
author = {Marco Riccardi},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {41-45},
title = {Planes and Spheres as Topological Manifolds. Stereographic Projection},
url = {http://eudml.org/doc/267814},
volume = {20},
year = {2012},
}
TY - JOUR
AU - Marco Riccardi
TI - Planes and Spheres as Topological Manifolds. Stereographic Projection
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 1
SP - 41
EP - 45
AB - The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].
LA - eng
UR - http://eudml.org/doc/267814
ER -
References
top- Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
- Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
- Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
- Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
- Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
- Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in εn/T Formalized Mathematics, 12(3):301-306, 2004.
- Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.
- Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000. Zbl0956.57001
- Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
- Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. Formalized Mathematics, 17(1):1-9, 2009, doi:10.2478/v10037-009-0001-2.[Crossref]
- Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990. Zbl0916.51004
- Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.[Crossref]
- Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.[Crossref] Zbl1276.57023
- Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.
- Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
- Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
- Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
- Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.