Planes and Spheres as Topological Manifolds. Stereographic Projection

Marco Riccardi

Formalized Mathematics (2012)

  • Volume: 20, Issue: 1, page 41-45
  • ISSN: 1426-2630

Abstract

top
The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].

How to cite

top

Marco Riccardi. "Planes and Spheres as Topological Manifolds. Stereographic Projection." Formalized Mathematics 20.1 (2012): 41-45. <http://eudml.org/doc/267814>.

@article{MarcoRiccardi2012,
abstract = {The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].},
author = {Marco Riccardi},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {41-45},
title = {Planes and Spheres as Topological Manifolds. Stereographic Projection},
url = {http://eudml.org/doc/267814},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Marco Riccardi
TI - Planes and Spheres as Topological Manifolds. Stereographic Projection
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 1
SP - 41
EP - 45
AB - The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].
LA - eng
UR - http://eudml.org/doc/267814
ER -

References

top
  1. Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  3. Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990. 
  4. Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  5. Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992. 
  6. Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  7. Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  8. Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  9. Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  10. Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  11. Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  12. Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  13. Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990. 
  14. Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990. 
  15. Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  16. Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  17. Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991. 
  18. Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  19. Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991. 
  20. Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990. 
  21. Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in εn/T Formalized Mathematics, 12(3):301-306, 2004. 
  22. Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005. 
  23. Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  24. Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  25. John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000. Zbl0956.57001
  26. Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998. 
  27. Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. Formalized Mathematics, 17(1):1-9, 2009, doi:10.2478/v10037-009-0001-2.[Crossref] 
  28. Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990. Zbl0916.51004
  29. Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990. 
  30. Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991. 
  31. Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  32. Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.[Crossref] 
  33. Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.[Crossref] Zbl1276.57023
  34. Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  35. Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003. 
  36. Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990. 
  37. Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990. 
  38. Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990. 
  39. Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  40. Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  41. Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  42. Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.