Partial Differentiation of Real Binary Functions
Bing Xie; Xiquan Liang; Hongwei Li
Formalized Mathematics (2008)
- Volume: 16, Issue: 4, page 333-338
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topBing Xie, Xiquan Liang, and Hongwei Li. "Partial Differentiation of Real Binary Functions." Formalized Mathematics 16.4 (2008): 333-338. <http://eudml.org/doc/267011>.
@article{BingXie2008,
abstract = {In this article, we define two single-variable functions SVF1 and SVF2, then discuss partial differentiation of real binary functions by dint of one variable function SVF1 and SVF2. The main properties of partial differentiation are shown [7].MML identifier: PDIFF 2, version: 7.9.03 4.104.1021},
author = {Bing Xie, Xiquan Liang, Hongwei Li},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {333-338},
title = {Partial Differentiation of Real Binary Functions},
url = {http://eudml.org/doc/267011},
volume = {16},
year = {2008},
}
TY - JOUR
AU - Bing Xie
AU - Xiquan Liang
AU - Hongwei Li
TI - Partial Differentiation of Real Binary Functions
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 4
SP - 333
EP - 338
AB - In this article, we define two single-variable functions SVF1 and SVF2, then discuss partial differentiation of real binary functions by dint of one variable function SVF1 and SVF2. The main properties of partial differentiation are shown [7].MML identifier: PDIFF 2, version: 7.9.03 4.104.1021
LA - eng
UR - http://eudml.org/doc/267011
ER -
References
top- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [7] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces ▽n. Formalized Mathematics, 15(2):65-72, 2007.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [11] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
- [12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.