Partial Differentiation of Real Binary Functions

Bing Xie; Xiquan Liang; Hongwei Li

Formalized Mathematics (2008)

  • Volume: 16, Issue: 4, page 333-338
  • ISSN: 1426-2630

Abstract

top
In this article, we define two single-variable functions SVF1 and SVF2, then discuss partial differentiation of real binary functions by dint of one variable function SVF1 and SVF2. The main properties of partial differentiation are shown [7].MML identifier: PDIFF 2, version: 7.9.03 4.104.1021

How to cite

top

Bing Xie, Xiquan Liang, and Hongwei Li. "Partial Differentiation of Real Binary Functions." Formalized Mathematics 16.4 (2008): 333-338. <http://eudml.org/doc/267011>.

@article{BingXie2008,
abstract = {In this article, we define two single-variable functions SVF1 and SVF2, then discuss partial differentiation of real binary functions by dint of one variable function SVF1 and SVF2. The main properties of partial differentiation are shown [7].MML identifier: PDIFF 2, version: 7.9.03 4.104.1021},
author = {Bing Xie, Xiquan Liang, Hongwei Li},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {333-338},
title = {Partial Differentiation of Real Binary Functions},
url = {http://eudml.org/doc/267011},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Bing Xie
AU - Xiquan Liang
AU - Hongwei Li
TI - Partial Differentiation of Real Binary Functions
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 4
SP - 333
EP - 338
AB - In this article, we define two single-variable functions SVF1 and SVF2, then discuss partial differentiation of real binary functions by dint of one variable function SVF1 and SVF2. The main properties of partial differentiation are shown [7].MML identifier: PDIFF 2, version: 7.9.03 4.104.1021
LA - eng
UR - http://eudml.org/doc/267011
ER -

References

top
  1. [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  2. [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  3. [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  4. [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  5. [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  6. [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  7. [7] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces ▽n. Formalized Mathematics, 15(2):65-72, 2007. 
  8. [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  9. [9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990. 
  10. [10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  11. [11] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990. 
  12. [12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990. 
  13. [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  14. [14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  15. [15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.