Second-Order Partial Differentiation of Real Binary Functions
Bing Xie; Xiquan Liang; Xiuzhuan Shen
Formalized Mathematics (2009)
- Volume: 17, Issue: 2, page 79-87
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topBing Xie, Xiquan Liang, and Xiuzhuan Shen. "Second-Order Partial Differentiation of Real Binary Functions." Formalized Mathematics 17.2 (2009): 79-87. <http://eudml.org/doc/267251>.
@article{BingXie2009,
abstract = {In this article we define second-order partial differentiation of real binary functions and discuss the relation of second-order partial derivatives and partial derivatives defined in [17].},
author = {Bing Xie, Xiquan Liang, Xiuzhuan Shen},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {79-87},
title = {Second-Order Partial Differentiation of Real Binary Functions},
url = {http://eudml.org/doc/267251},
volume = {17},
year = {2009},
}
TY - JOUR
AU - Bing Xie
AU - Xiquan Liang
AU - Xiuzhuan Shen
TI - Second-Order Partial Differentiation of Real Binary Functions
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 2
SP - 79
EP - 87
AB - In this article we define second-order partial differentiation of real binary functions and discuss the relation of second-order partial derivatives and partial derivatives defined in [17].
LA - eng
UR - http://eudml.org/doc/267251
ER -
References
top- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [7] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rn.Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.[Crossref]
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [10] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
- [11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
- [14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [17] Bing Xie, Xiquan Liang, and Hongwei Li. Partial differentiation of real binary functions. Formalized Mathematics, 16(4):333-338, 2008, doi:10.2478/v10037-008-0041-z.[Crossref]
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.