# The First Mean Value Theorem for Integrals

Keiko Narita; Noboru Endou; Yasunari Shidama

Formalized Mathematics (2008)

- Volume: 16, Issue: 1, page 51-55
- ISSN: 1426-2630

## Access Full Article

top## Abstract

top## How to cite

topKeiko Narita, Noboru Endou, and Yasunari Shidama. "The First Mean Value Theorem for Integrals." Formalized Mathematics 16.1 (2008): 51-55. <http://eudml.org/doc/267055>.

@article{KeikoNarita2008,

abstract = {In this article, we prove the first mean value theorem for integrals [16]. The formalization of various theorems about the properties of the Lebesgue integral is also presented.MML identifier: MESFUNC7, version: 7.8.09 4.97.1001},

author = {Keiko Narita, Noboru Endou, Yasunari Shidama},

journal = {Formalized Mathematics},

keywords = {normed linear spaces; Banach spaces; duality; orthogonal projection; Riesz representation},

language = {eng},

number = {1},

pages = {51-55},

title = {The First Mean Value Theorem for Integrals},

url = {http://eudml.org/doc/267055},

volume = {16},

year = {2008},

}

TY - JOUR

AU - Keiko Narita

AU - Noboru Endou

AU - Yasunari Shidama

TI - The First Mean Value Theorem for Integrals

JO - Formalized Mathematics

PY - 2008

VL - 16

IS - 1

SP - 51

EP - 55

AB - In this article, we prove the first mean value theorem for integrals [16]. The formalization of various theorems about the properties of the Lebesgue integral is also presented.MML identifier: MESFUNC7, version: 7.8.09 4.97.1001

LA - eng

KW - normed linear spaces; Banach spaces; duality; orthogonal projection; Riesz representation

UR - http://eudml.org/doc/267055

ER -

## References

top- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
- [5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
- [6] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
- [7] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
- [8] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [12] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.
- [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
- [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
- [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.
- [16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.
- [17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [18] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
- [19] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.