The First Mean Value Theorem for Integrals
Keiko Narita; Noboru Endou; Yasunari Shidama
Formalized Mathematics (2008)
- Volume: 16, Issue: 1, page 51-55
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topKeiko Narita, Noboru Endou, and Yasunari Shidama. "The First Mean Value Theorem for Integrals." Formalized Mathematics 16.1 (2008): 51-55. <http://eudml.org/doc/267055>.
@article{KeikoNarita2008,
abstract = {In this article, we prove the first mean value theorem for integrals [16]. The formalization of various theorems about the properties of the Lebesgue integral is also presented.MML identifier: MESFUNC7, version: 7.8.09 4.97.1001},
author = {Keiko Narita, Noboru Endou, Yasunari Shidama},
journal = {Formalized Mathematics},
keywords = {normed linear spaces; Banach spaces; duality; orthogonal projection; Riesz representation},
language = {eng},
number = {1},
pages = {51-55},
title = {The First Mean Value Theorem for Integrals},
url = {http://eudml.org/doc/267055},
volume = {16},
year = {2008},
}
TY - JOUR
AU - Keiko Narita
AU - Noboru Endou
AU - Yasunari Shidama
TI - The First Mean Value Theorem for Integrals
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 1
SP - 51
EP - 55
AB - In this article, we prove the first mean value theorem for integrals [16]. The formalization of various theorems about the properties of the Lebesgue integral is also presented.MML identifier: MESFUNC7, version: 7.8.09 4.97.1001
LA - eng
KW - normed linear spaces; Banach spaces; duality; orthogonal projection; Riesz representation
UR - http://eudml.org/doc/267055
ER -
References
top- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
- [5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
- [6] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
- [7] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
- [8] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [12] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.
- [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
- [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
- [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.
- [16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.
- [17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [18] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
- [19] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.