The First Mean Value Theorem for Integrals

Keiko Narita; Noboru Endou; Yasunari Shidama

Formalized Mathematics (2008)

  • Volume: 16, Issue: 1, page 51-55
  • ISSN: 1426-2630

Abstract

top
In this article, we prove the first mean value theorem for integrals [16]. The formalization of various theorems about the properties of the Lebesgue integral is also presented.MML identifier: MESFUNC7, version: 7.8.09 4.97.1001

How to cite

top

Keiko Narita, Noboru Endou, and Yasunari Shidama. "The First Mean Value Theorem for Integrals." Formalized Mathematics 16.1 (2008): 51-55. <http://eudml.org/doc/267055>.

@article{KeikoNarita2008,
abstract = {In this article, we prove the first mean value theorem for integrals [16]. The formalization of various theorems about the properties of the Lebesgue integral is also presented.MML identifier: MESFUNC7, version: 7.8.09 4.97.1001},
author = {Keiko Narita, Noboru Endou, Yasunari Shidama},
journal = {Formalized Mathematics},
keywords = {normed linear spaces; Banach spaces; duality; orthogonal projection; Riesz representation},
language = {eng},
number = {1},
pages = {51-55},
title = {The First Mean Value Theorem for Integrals},
url = {http://eudml.org/doc/267055},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Keiko Narita
AU - Noboru Endou
AU - Yasunari Shidama
TI - The First Mean Value Theorem for Integrals
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 1
SP - 51
EP - 55
AB - In this article, we prove the first mean value theorem for integrals [16]. The formalization of various theorems about the properties of the Lebesgue integral is also presented.MML identifier: MESFUNC7, version: 7.8.09 4.97.1001
LA - eng
KW - normed linear spaces; Banach spaces; duality; orthogonal projection; Riesz representation
UR - http://eudml.org/doc/267055
ER -

References

top
  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  4. [4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991. 
  5. [5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991. 
  6. [6] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991. 
  7. [7] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996. 
  8. [8] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  9. [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  10. [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  11. [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  12. [12] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. 
  13. [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001. 
  14. [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001. 
  15. [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001. 
  16. [16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987. 
  17. [17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  18. [18] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990. 
  19. [19] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990. 
  20. [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  21. [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  22. [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.