On the Continuity of Some Functions
Formalized Mathematics (2010)
- Volume: 18, Issue: 3, page 175-183
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topArtur Korniłowicz. "On the Continuity of Some Functions." Formalized Mathematics 18.3 (2010): 175-183. <http://eudml.org/doc/267068>.
@article{ArturKorniłowicz2010,
abstract = {We prove that basic arithmetic operations preserve continuity of functions.},
author = {Artur Korniłowicz},
journal = {Formalized Mathematics},
language = {eng},
number = {3},
pages = {175-183},
title = {On the Continuity of Some Functions},
url = {http://eudml.org/doc/267068},
volume = {18},
year = {2010},
}
TY - JOUR
AU - Artur Korniłowicz
TI - On the Continuity of Some Functions
JO - Formalized Mathematics
PY - 2010
VL - 18
IS - 3
SP - 175
EP - 183
AB - We prove that basic arithmetic operations preserve continuity of functions.
LA - eng
UR - http://eudml.org/doc/267068
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
- [6] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
- [13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
- [15] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.[Crossref]
- [16] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in ϵn/T. Formalized Mathematics, 12(3):301-306, 2004.
- [17] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.
- [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [20] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
- [21] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.
- [22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.