On the Continuity of Some Functions

Artur Korniłowicz

Formalized Mathematics (2010)

  • Volume: 18, Issue: 3, page 175-183
  • ISSN: 1426-2630

Abstract

top
We prove that basic arithmetic operations preserve continuity of functions.

How to cite

top

Artur Korniłowicz. "On the Continuity of Some Functions." Formalized Mathematics 18.3 (2010): 175-183. <http://eudml.org/doc/267068>.

@article{ArturKorniłowicz2010,
abstract = {We prove that basic arithmetic operations preserve continuity of functions.},
author = {Artur Korniłowicz},
journal = {Formalized Mathematics},
language = {eng},
number = {3},
pages = {175-183},
title = {On the Continuity of Some Functions},
url = {http://eudml.org/doc/267068},
volume = {18},
year = {2010},
}

TY - JOUR
AU - Artur Korniłowicz
TI - On the Continuity of Some Functions
JO - Formalized Mathematics
PY - 2010
VL - 18
IS - 3
SP - 175
EP - 183
AB - We prove that basic arithmetic operations preserve continuity of functions.
LA - eng
UR - http://eudml.org/doc/267068
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  3. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  5. [5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996. 
  6. [6] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  7. [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  8. [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  9. [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  10. [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  11. [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  12. [12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990. 
  13. [13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  14. [14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991. 
  15. [15] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.[Crossref] 
  16. [16] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in ϵn/T. Formalized Mathematics, 12(3):301-306, 2004. 
  17. [17] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005. 
  18. [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  19. [19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  20. [20] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991. 
  21. [21] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003. 
  22. [22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. 
  23. [23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  24. [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  25. [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  26. [26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.