The Borsuk-Ulam Theorem

Artur Korniłowicz; Marco Riccardi

Formalized Mathematics (2012)

  • Volume: 20, Issue: 2, page 105-112
  • ISSN: 1426-2630

Abstract

top
The Borsuk-Ulam theorem about antipodals is proven, [18, pp. 32-33].

How to cite

top

Artur Korniłowicz, and Marco Riccardi. "The Borsuk-Ulam Theorem." Formalized Mathematics 20.2 (2012): 105-112. <http://eudml.org/doc/267694>.

@article{ArturKorniłowicz2012,
abstract = {The Borsuk-Ulam theorem about antipodals is proven, [18, pp. 32-33].},
author = {Artur Korniłowicz, Marco Riccardi},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {105-112},
title = {The Borsuk-Ulam Theorem},
url = {http://eudml.org/doc/267694},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Artur Korniłowicz
AU - Marco Riccardi
TI - The Borsuk-Ulam Theorem
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 2
SP - 105
EP - 112
AB - The Borsuk-Ulam theorem about antipodals is proven, [18, pp. 32-33].
LA - eng
UR - http://eudml.org/doc/267694
ER -

References

top
  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  2. [2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990. 
  3. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  5. [5] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  6. [6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  7. [7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  8. [8] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990. 
  9. [9] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  10. [10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  11. [11] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990. 
  12. [12] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990. 
  13. [13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  14. [14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991. 
  15. [15] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997. 
  16. [16] Adam Grabowski. On the subcontinua of a real line. Formalized Mathematics, 11(3):313-322, 2003. 
  17. [17] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57-62, 1998. 
  18. [18] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. 
  19. [19] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  20. [20] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematics, 11(4):381-383, 2003. 
  21. [21] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.[Crossref] 
  22. [22] Artur Korniłowicz. On the continuity of some functions. Formalized Mathematics, 18(3):175-183, 2010, doi: 10.2478/v10037-010-0020-z.[Crossref] 
  23. [23] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En T. Formalized Mathematics, 12(3):301-306, 2004. 
  24. [24] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. FormalizedMathematics, 13(1):117-124, 2005. 
  25. [25] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261-268, 2004. 
  26. [26] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281-287, 2003. 
  27. [27] Adam Naumowicz and Grzegorz Bancerek. Homeomorphisms of Jordan curves. FormalizedMathematics, 13(4):477-480, 2005. 
  28. [28] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990. 
  29. [29] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  30. [30] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990. 
  31. [31] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  32. [32] Marco Riccardi and Artur Korniłowicz. Fundamental group of n-sphere for n ≥2. FormalizedMathematics, 20(2):97-104, 2012, doi: 10.2478/v10037-012-0013-1.[Crossref] Zbl1276.57004
  33. [33] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997. 
  34. [34] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  35. [35] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990. 
  36. [36] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991. 
  37. [37] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. FormalizedMathematics, 1(3):445-449, 1990. 
  38. [38] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  39. [39] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  40. [40] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  41. [41] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  42. [42] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  43. [43] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.