Fatou's Lemma and the Lebesgue's Convergence Theorem

Noboru Endou; Keiko Narita; Yasunari Shidama

Formalized Mathematics (2008)

  • Volume: 16, Issue: 4, page 305-309
  • ISSN: 1426-2630

Abstract

top
In this article we prove the Fatou's Lemma and Lebesgue's Convergence Theorem [10].MML identifier: MESFUN10, version: 7.9.01 4.101.1015

How to cite

top

Noboru Endou, Keiko Narita, and Yasunari Shidama. "Fatou's Lemma and the Lebesgue's Convergence Theorem." Formalized Mathematics 16.4 (2008): 305-309. <http://eudml.org/doc/267127>.

@article{NoboruEndou2008,
abstract = {In this article we prove the Fatou's Lemma and Lebesgue's Convergence Theorem [10].MML identifier: MESFUN10, version: 7.9.01 4.101.1015},
author = {Noboru Endou, Keiko Narita, Yasunari Shidama},
journal = {Formalized Mathematics},
keywords = {normed linear spaces; Banach spaces; duality and reflexivity; weak topologies; weak topologies},
language = {eng},
number = {4},
pages = {305-309},
title = {Fatou's Lemma and the Lebesgue's Convergence Theorem},
url = {http://eudml.org/doc/267127},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Noboru Endou
AU - Keiko Narita
AU - Yasunari Shidama
TI - Fatou's Lemma and the Lebesgue's Convergence Theorem
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 4
SP - 305
EP - 309
AB - In this article we prove the Fatou's Lemma and Lebesgue's Convergence Theorem [10].MML identifier: MESFUN10, version: 7.9.01 4.101.1015
LA - eng
KW - normed linear spaces; Banach spaces; duality and reflexivity; weak topologies; weak topologies
UR - http://eudml.org/doc/267127
ER -

References

top
  1. [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  2. [2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991. 
  3. [3] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991. 
  4. [4] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991. 
  5. [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  6. [6] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. 
  7. [7] Noboru Endou, Yasunari Shidama, and Keiko Narita. Egoroff's theorem. Formalized Mathematics, 16(1):57-63, 2008. Zbl1298.46005
  8. [8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001. 
  9. [9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001. 
  10. [10] P. R. Halmos. Measure Theory. Springer-Verlag, 1987. 
  11. [11] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990. 
  12. [12] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990. 
  13. [13] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992. 
  14. [14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990. 
  15. [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  16. [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  17. [17] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. 

NotesEmbed ?

top

You must be logged in to post comments.