Integrability Formulas. Part II
Formalized Mathematics (2010)
- Volume: 18, Issue: 2, page 129-141
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topBo Li, Na Ma, and Xiquan Liang. "Integrability Formulas. Part II." Formalized Mathematics 18.2 (2010): 129-141. <http://eudml.org/doc/267134>.
@article{BoLi2010,
abstract = {In this article, we give several differentiation and integrability formulas of special and composite functions including trigonometric function, and polynomial function.},
author = {Bo Li, Na Ma, Xiquan Liang},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {129-141},
title = {Integrability Formulas. Part II},
url = {http://eudml.org/doc/267134},
volume = {18},
year = {2010},
}
TY - JOUR
AU - Bo Li
AU - Na Ma
AU - Xiquan Liang
TI - Integrability Formulas. Part II
JO - Formalized Mathematics
PY - 2010
VL - 18
IS - 2
SP - 129
EP - 141
AB - In this article, we give several differentiation and integrability formulas of special and composite functions including trigonometric function, and polynomial function.
LA - eng
UR - http://eudml.org/doc/267134
ER -
References
top- [1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [2] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
- [3] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [5] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
- [6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
- [7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [9] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
- [10] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008, doi:10.2478/v10037-008-0021-3.[Crossref]
- [11] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.
- [12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
- [14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [15] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
- [16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.