Sperner's Lemma
Formalized Mathematics (2010)
- Volume: 18, Issue: 4, page 189-196
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topKarol Pąk. "Sperner's Lemma." Formalized Mathematics 18.4 (2010): 189-196. <http://eudml.org/doc/267185>.
@article{KarolPąk2010,
abstract = {In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function ƒ, which for an arbitrary vertex υ of the barycentric subdivision B of simplex K assigns some vertex from a face of K which contains υ, we can find a simplex S of B which satisfies ƒ(S) = K (see [10]).},
author = {Karol Pąk},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {189-196},
title = {Sperner's Lemma},
url = {http://eudml.org/doc/267185},
volume = {18},
year = {2010},
}
TY - JOUR
AU - Karol Pąk
TI - Sperner's Lemma
JO - Formalized Mathematics
PY - 2010
VL - 18
IS - 4
SP - 189
EP - 196
AB - In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function ƒ, which for an arbitrary vertex υ of the barycentric subdivision B of simplex K assigns some vertex from a face of K which contains υ, we can find a simplex S of B which satisfies ƒ(S) = K (see [10]).
LA - eng
UR - http://eudml.org/doc/267185
ER -
References
top- [1] Broderick Arneson and Piotr Rudnicki. Recognizing chordal graphs: Lex BFS and MCS. Formalized Mathematics, 14(4):187-205, 2006, doi:10.2478/v10037-006-0022-z.[Crossref]
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [5] Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.[Crossref]
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [10] Roman Duda. Wprowadzenie do topologii. PWN, 1986. Zbl0636.54001
- [11] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [13] Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001. Zbl1019.51003
- [14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [16] Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.[Crossref]
- [17] Karol Pąk. Abstract simplicial complexes. Formalized Mathematics, 18(1):95-106, 2010, doi: 10.2478/v10037-010-0013-y.[Crossref]
- [18] Karol Pąk. The geometric interior in real linear spaces. Formalized Mathematics, 18(3):185-188, 2010, doi: 10.2478/v10037-010-0021-y.[Crossref]
- [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.