Sperner's Lemma

Karol Pąk

Formalized Mathematics (2010)

  • Volume: 18, Issue: 4, page 189-196
  • ISSN: 1426-2630

Abstract

top
In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function ƒ, which for an arbitrary vertex υ of the barycentric subdivision B of simplex K assigns some vertex from a face of K which contains υ, we can find a simplex S of B which satisfies ƒ(S) = K (see [10]).

How to cite

top

Karol Pąk. "Sperner's Lemma." Formalized Mathematics 18.4 (2010): 189-196. <http://eudml.org/doc/267185>.

@article{KarolPąk2010,
abstract = {In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function ƒ, which for an arbitrary vertex υ of the barycentric subdivision B of simplex K assigns some vertex from a face of K which contains υ, we can find a simplex S of B which satisfies ƒ(S) = K (see [10]).},
author = {Karol Pąk},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {189-196},
title = {Sperner's Lemma},
url = {http://eudml.org/doc/267185},
volume = {18},
year = {2010},
}

TY - JOUR
AU - Karol Pąk
TI - Sperner's Lemma
JO - Formalized Mathematics
PY - 2010
VL - 18
IS - 4
SP - 189
EP - 196
AB - In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function ƒ, which for an arbitrary vertex υ of the barycentric subdivision B of simplex K assigns some vertex from a face of K which contains υ, we can find a simplex S of B which satisfies ƒ(S) = K (see [10]).
LA - eng
UR - http://eudml.org/doc/267185
ER -

References

top
  1. [1] Broderick Arneson and Piotr Rudnicki. Recognizing chordal graphs: Lex BFS and MCS. Formalized Mathematics, 14(4):187-205, 2006, doi:10.2478/v10037-006-0022-z.[Crossref] 
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  5. [5] Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.[Crossref] 
  6. [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  7. [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  8. [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  9. [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  10. [10] Roman Duda. Wprowadzenie do topologii. PWN, 1986. Zbl0636.54001
  11. [11] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003. 
  12. [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  13. [13] Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001. Zbl1019.51003
  14. [14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990. 
  15. [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  16. [16] Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.[Crossref] 
  17. [17] Karol Pąk. Abstract simplicial complexes. Formalized Mathematics, 18(1):95-106, 2010, doi: 10.2478/v10037-010-0013-y.[Crossref] 
  18. [18] Karol Pąk. The geometric interior in real linear spaces. Formalized Mathematics, 18(3):185-188, 2010, doi: 10.2478/v10037-010-0021-y.[Crossref] 
  19. [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990. 
  20. [20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  21. [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  22. [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  23. [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.