Introduction to Matroids

Grzegorz Bancerek; Yasunari Shidama

Formalized Mathematics (2008)

  • Volume: 16, Issue: 4, page 325-332
  • ISSN: 1426-2630

Abstract

top
The paper includes elements of the theory of matroids [23]. The formalization is done according to [12].MML identifier: MATROID0, version: 7.9.03 4.108.1028

How to cite

top

Grzegorz Bancerek, and Yasunari Shidama. "Introduction to Matroids." Formalized Mathematics 16.4 (2008): 325-332. <http://eudml.org/doc/267354>.

@article{GrzegorzBancerek2008,
abstract = {The paper includes elements of the theory of matroids [23]. The formalization is done according to [12].MML identifier: MATROID0, version: 7.9.03 4.108.1028},
author = {Grzegorz Bancerek, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {325-332},
title = {Introduction to Matroids},
url = {http://eudml.org/doc/267354},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Grzegorz Bancerek
AU - Yasunari Shidama
TI - Introduction to Matroids
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 4
SP - 325
EP - 332
AB - The paper includes elements of the theory of matroids [23]. The formalization is done according to [12].MML identifier: MATROID0, version: 7.9.03 4.108.1028
LA - eng
UR - http://eudml.org/doc/267354
ER -

References

top
  1. [1] Broderick Arneson and Piotr Rudnicki. Recognizing chordal graphs: Lex BFS and MCS. Formalized Mathematics, 14(4):187-205, 2006. 
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  4. [4] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990. 
  5. [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  6. [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  7. [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  8. [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  9. [9] Mariusz Giero. Hierarchies and classifications of sets. Formalized Mathematics, 9(4):865-869, 2001. 
  10. [10] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992. 
  11. [11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  12. [12] Witold Lipski. Kombinatoryka dla programistów, chapter Matroidy, pages 163-169. Wydawnictwo Naukowo-Techniczne, 1982. 
  13. [13] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996. 
  14. [14] Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001. 
  15. [15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990. 
  16. [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  17. [17] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990. 
  18. [18] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990. 
  19. [19] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990. 
  20. [20] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990. 
  21. [21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  22. [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  23. [23] D. J. A. Welsh. Matroid theory. Academic Press, London, New York, San Francisco, 1976. Zbl0343.05002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.