Solutions of Linear Equations

Karol Pąk

Formalized Mathematics (2008)

  • Volume: 16, Issue: 1, page 81-90
  • ISSN: 1426-2630

Abstract

top
In this paper I present the Kronecker-Capelli theorem which states that a system of linear equations has a solution if and only if the rank of its coefficient matrix is equal to the rank of its augmented matrix.MML identifier: MATRIX15, version: 7.8.09 4.97.1001

How to cite

top

Karol Pąk. "Solutions of Linear Equations." Formalized Mathematics 16.1 (2008): 81-90. <http://eudml.org/doc/267191>.

@article{KarolPąk2008,
abstract = {In this paper I present the Kronecker-Capelli theorem which states that a system of linear equations has a solution if and only if the rank of its coefficient matrix is equal to the rank of its augmented matrix.MML identifier: MATRIX15, version: 7.8.09 4.97.1001},
author = {Karol Pąk},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {81-90},
title = {Solutions of Linear Equations},
url = {http://eudml.org/doc/267191},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Karol Pąk
TI - Solutions of Linear Equations
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 1
SP - 81
EP - 90
AB - In this paper I present the Kronecker-Capelli theorem which states that a system of linear equations has a solution if and only if the rank of its coefficient matrix is equal to the rank of its augmented matrix.MML identifier: MATRIX15, version: 7.8.09 4.97.1001
LA - eng
UR - http://eudml.org/doc/267191
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  4. [4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990. 
  5. [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  6. [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  7. [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  8. [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  9. [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  10. [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  11. [11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991. 
  12. [12] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991. 
  13. [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  14. [14] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996. 
  15. [15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993. 
  16. [16] Karol Pαk. Basic properties of determinants of square matrices over a field. Formalized Mathematics, 15(1):17-25, 2007. 
  17. [17] Karol Pαk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007. 
  18. [18] Karol Pαk and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143-150, 2007. 
  19. [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990. 
  20. [20] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990. 
  21. [21] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  22. [22] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990. 
  23. [23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  24. [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  25. [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  26. [26] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992. 
  27. [27] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993. 
  28. [28] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.