Linear Transformations of Euclidean Topological Spaces

Karol Pąk

Formalized Mathematics (2011)

  • Volume: 19, Issue: 2, page 103-108
  • ISSN: 1426-2630

Abstract

top
We introduce linear transformations of Euclidean topological spaces given by a transformation matrix. Next, we prove selected properties and basic arithmetic operations on these linear transformations. Finally, we show that a linear transformation given by an invertible matrix is a homeomorphism.

How to cite

top

Karol Pąk. "Linear Transformations of Euclidean Topological Spaces." Formalized Mathematics 19.2 (2011): 103-108. <http://eudml.org/doc/266875>.

@article{KarolPąk2011,
abstract = {We introduce linear transformations of Euclidean topological spaces given by a transformation matrix. Next, we prove selected properties and basic arithmetic operations on these linear transformations. Finally, we show that a linear transformation given by an invertible matrix is a homeomorphism.},
author = {Karol Pąk},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {103-108},
title = {Linear Transformations of Euclidean Topological Spaces},
url = {http://eudml.org/doc/266875},
volume = {19},
year = {2011},
}

TY - JOUR
AU - Karol Pąk
TI - Linear Transformations of Euclidean Topological Spaces
JO - Formalized Mathematics
PY - 2011
VL - 19
IS - 2
SP - 103
EP - 108
AB - We introduce linear transformations of Euclidean topological spaces given by a transformation matrix. Next, we prove selected properties and basic arithmetic operations on these linear transformations. Finally, we show that a linear transformation given by an invertible matrix is a homeomorphism.
LA - eng
UR - http://eudml.org/doc/266875
ER -

References

top
  1. [1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007, doi:10.2478/v10037-007-0015-6.[Crossref] 
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  5. [5] Grzegorz Bancerek, Mitsuru Aoki, Akio Matsumoto, and Yasunari Shidama. Processes in Petri nets. Formalized Mathematics, 11(1):125-132, 2003. 
  6. [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  7. [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  8. [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  9. [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  10. [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990. 
  11. [11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990. 
  12. [12] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  13. [13] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003. 
  14. [14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  15. [15] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991. 
  16. [16] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005. 
  17. [17] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  18. [18] Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235-240, 1992. 
  19. [19] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996. 
  20. [20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  21. [21] Karol Pąk. Basic properties of determinants of square matrices over a field. Formalized Mathematics, 15(1):17-25, 2007, doi:10.2478/v10037-007-0003-x.[Crossref] 
  22. [22] Karol Pąk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007, doi:10.2478/v10037-007-0024-5.[Crossref] 
  23. [23] Karol Pąk. Solutions of linear equations. Formalized Mathematics, 16(1):81-90, 2008, doi:10.2478/v10037-008-0012-4.[Crossref] 
  24. [24] Karol Pąk. Linear map of matrices. Formalized Mathematics, 16(3):269-275, 2008, doi:10.2478/v10037-008-0032-0.[Crossref] 
  25. [25] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. 
  26. [26] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990. 
  27. [27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  28. [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  29. [29] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005. 
  30. [30] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992. 
  31. [31] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993. 

NotesEmbed ?

top

You must be logged in to post comments.