The Lebesgue Monotone Convergence Theorem
Noboru Endou; Keiko Narita; Yasunari Shidama
Formalized Mathematics (2008)
- Volume: 16, Issue: 2, page 167-175
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topNoboru Endou, Keiko Narita, and Yasunari Shidama. "The Lebesgue Monotone Convergence Theorem." Formalized Mathematics 16.2 (2008): 167-175. <http://eudml.org/doc/267197>.
@article{NoboruEndou2008,
abstract = {In this article we prove the Monotone Convergence Theorem [16].MML identifier: MESFUNC9, version: 7.8.10 4.100.1011},
author = {Noboru Endou, Keiko Narita, Yasunari Shidama},
journal = {Formalized Mathematics},
keywords = {normed linear spaces; Banach spaces; duality; orthogonal projection; Riesz representation},
language = {eng},
number = {2},
pages = {167-175},
title = {The Lebesgue Monotone Convergence Theorem},
url = {http://eudml.org/doc/267197},
volume = {16},
year = {2008},
}
TY - JOUR
AU - Noboru Endou
AU - Keiko Narita
AU - Yasunari Shidama
TI - The Lebesgue Monotone Convergence Theorem
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 2
SP - 167
EP - 175
AB - In this article we prove the Monotone Convergence Theorem [16].MML identifier: MESFUNC9, version: 7.8.10 4.100.1011
LA - eng
KW - normed linear spaces; Banach spaces; duality; orthogonal projection; Riesz representation
UR - http://eudml.org/doc/267197
ER -
References
top- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
- [4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
- [5] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
- [6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [11] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.
- [12] Noboru Endou, Yasunari Shidama, and Keiko Narita. Egoroff's theorem. Formalized Mathematics, 16(1):57-63, 2008. Zbl1298.46005
- [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
- [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
- [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.
- [16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.
- [17] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
- [18] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [19] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [22] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007.
Citations in EuDML Documents
top- Noboru Endou, Hiroyuki Okazaki, Yasunari Shidama, Double Sequences and Limits
- Noboru Endou, Hiroyuki Okazaki, Yasunari Shidama, Hopf Extension Theorem of Measure
- Noboru Endou, Double Series and Sums
- Keiko Narita, Noboru Endou, Yasunari Shidama, Lebesgue's Convergence Theorem of Complex-Valued Function
- Noboru Endou, Extended Real-Valued Double Sequence and Its Convergence
- Noboru Endou, Construction of Measure from Semialgebra of Sets1
- Noboru Endou, Product Pre-Measure
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.