Nonnegative definite hermitian matrices with increasing principal minors
Special Matrices (2013)
- Volume: 1, page 1-2
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topShmuel Friedland. "Nonnegative definite hermitian matrices with increasing principal minors." Special Matrices 1 (2013): 1-2. <http://eudml.org/doc/267205>.
@article{ShmuelFriedland2013,
abstract = {A nonnegative definite hermitian m × m matrix A≠0 has increasing principal minors if det A[I] ≤ det A[J] for I⊂J, where det A[I] is the principal minor of A based on rows and columns in the set I ⊆ \{1,...,m\}. For m > 1 we show A has increasing principal minors if and only if A−1 exists and its diagonal entries are less or equal to 1.},
author = {Shmuel Friedland},
journal = {Special Matrices},
keywords = {Submodular functions; Hadamard-Fischer inequality; CUR approximations; submodular functions},
language = {eng},
pages = {1-2},
title = {Nonnegative definite hermitian matrices with increasing principal minors},
url = {http://eudml.org/doc/267205},
volume = {1},
year = {2013},
}
TY - JOUR
AU - Shmuel Friedland
TI - Nonnegative definite hermitian matrices with increasing principal minors
JO - Special Matrices
PY - 2013
VL - 1
SP - 1
EP - 2
AB - A nonnegative definite hermitian m × m matrix A≠0 has increasing principal minors if det A[I] ≤ det A[J] for I⊂J, where det A[I] is the principal minor of A based on rows and columns in the set I ⊆ {1,...,m}. For m > 1 we show A has increasing principal minors if and only if A−1 exists and its diagonal entries are less or equal to 1.
LA - eng
KW - Submodular functions; Hadamard-Fischer inequality; CUR approximations; submodular functions
UR - http://eudml.org/doc/267205
ER -
References
top- [1] D. Carlson, Weakly sign-symmetric matrices and some determinantal inequalities, Colloq. Math. 17 (1967), 123–129. Zbl0147.27502
- [2] Ky Fan, Subadditive functions on a distributive lattice and an extension of Szász’s inequality, J. Math. Anal. Appl. 18 (1967), 262–268. [Crossref] Zbl0204.02701
- [3] Ky Fan, An inequality for subadditive functions on a distributive lattice, with application to determinantal inequalities, Linear Algebra Appl. 1 (1968), 33–38. [Crossref] Zbl0155.06503
- [4] S. Friedland and S. Gaubert, Submodular spectral functions of principal submatrices of a hermitian matrix, extensions and applications, Linear Algebra Appl., 438 (2013), 3872–3884. [WoS] Zbl1281.15046
- [5] F. R. Gantmacher and M. G. Kre˘ın, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme. Wissenschaftliche Bearbeitung der deutschen Ausgabe: Alfred Stöhr. Mathematische Lehrbücher und Monographien, I. Abteilung, Bd. V. Akademie-Verlag, Berlin, 1960.
- [6] S.A. Goreinov, E.E. Tyrtyshnikov, and N.L. Zamarashkin, A theory of pseudo-skeleton approximations of matrices, Linear Algebra Appl. 261 (1997), 1 – 21. Zbl0877.65021
- [7] S. Iwata, Submodular function minimization, Math. Program. 112 (2008), 45–64. [WoS] Zbl1135.90038
- [8] D. M. Kotelyanski˘ı, On the theory of nonnegative and oscillating matrices, Ukrain. Mat. Zh. 2 (1950), 94–101.
- [9] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, An analysis of approximations for maximizing submodular set functions. I, Math. Program. 14 (1978), 265–294. [Crossref] Zbl0374.90045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.