Several Integrability Formulas of Special Functions. Part II

Bo Li; Yanping Zhuang; Yanhong Men; Xiquan Liang

Formalized Mathematics (2009)

  • Volume: 17, Issue: 1, page 23-35
  • ISSN: 1426-2630

Abstract

top
In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, the hyperbolic function and the polynomial function [3].MML identifier: INTEGR11, version: 7.11.01 4.117.1046

How to cite

top

Bo Li, et al. "Several Integrability Formulas of Special Functions. Part II." Formalized Mathematics 17.1 (2009): 23-35. <http://eudml.org/doc/267215>.

@article{BoLi2009,
abstract = {In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, the hyperbolic function and the polynomial function [3].MML identifier: INTEGR11, version: 7.11.01 4.117.1046},
author = {Bo Li, Yanping Zhuang, Yanhong Men, Xiquan Liang},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {23-35},
title = {Several Integrability Formulas of Special Functions. Part II},
url = {http://eudml.org/doc/267215},
volume = {17},
year = {2009},
}

TY - JOUR
AU - Bo Li
AU - Yanping Zhuang
AU - Yanhong Men
AU - Xiquan Liang
TI - Several Integrability Formulas of Special Functions. Part II
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 1
SP - 23
EP - 35
AB - In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, the hyperbolic function and the polynomial function [3].MML identifier: INTEGR11, version: 7.11.01 4.117.1046
LA - eng
UR - http://eudml.org/doc/267215
ER -

References

top
  1. [1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  2. [2] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in ε2. Formalized Mathematics, 6(3):427-440, 1997. 
  3. [3] Chuanzhang Chen. Mathematical Analysis. Higher Education Press, Beijing, 1978. 
  4. [4] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999. 
  5. [5] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001. 
  6. [6] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005. Zbl1276.26026
  7. [7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990. 
  8. [8] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990. 
  9. [9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990. 
  10. [10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  11. [11] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008, doi:10.2478/v10037-008-0021-3.[Crossref] 
  12. [12] Takashi Mitsuishi and Yuguang Yang. Properties of the trigonometric function. Formalized Mathematics, 8(1):103-106, 1999. 
  13. [13] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991. 
  14. [14] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990. 
  15. [15] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  16. [16] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004. 
  17. [17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. 
  18. [18] Andrzej Trybulec and Yatsuka Nakamura. On the decomposition of a simple closed curve into two arcs. Formalized Mathematics, 10(3):163-167, 2002. 
  19. [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  20. [20] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007, doi:10.2478/v10037-007-0009-4.[Crossref] 
  21. [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  22. [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  23. [23] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.