Basic Properties of Even and Odd Functions

Bo Li; Yanhong Men

Formalized Mathematics (2009)

  • Volume: 17, Issue: 2, page 187-192
  • ISSN: 1426-2630

Abstract

top
In this article we present definitions, basic properties and some examples of even and odd functions [6].

How to cite

top

Bo Li, and Yanhong Men. "Basic Properties of Even and Odd Functions." Formalized Mathematics 17.2 (2009): 187-192. <http://eudml.org/doc/267217>.

@article{BoLi2009,
abstract = {In this article we present definitions, basic properties and some examples of even and odd functions [6].},
author = {Bo Li, Yanhong Men},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {187-192},
title = {Basic Properties of Even and Odd Functions},
url = {http://eudml.org/doc/267217},
volume = {17},
year = {2009},
}

TY - JOUR
AU - Bo Li
AU - Yanhong Men
TI - Basic Properties of Even and Odd Functions
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 2
SP - 187
EP - 192
AB - In this article we present definitions, basic properties and some examples of even and odd functions [6].
LA - eng
UR - http://eudml.org/doc/267217
ER -

References

top
  1. [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  2. [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  3. [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  4. [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  5. [5] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004. 
  6. [6] Chuanzhang Chen. Mathematical Analysis. Higher Education Press, Beijing, 1978. 
  7. [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  8. [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  9. [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  10. [10] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008, doi:10.2478/v10037-008-0021-3.[Crossref] 
  11. [11] Takashi Mitsuishi and Yuguang Yang. Properties of the trigonometric function. Formalized Mathematics, 8(1):103-106, 1999. 
  12. [12] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990. 
  13. [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  14. [14] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003. 
  15. [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  16. [16] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007, doi:10.2478/v10037-007-0009-4.[Crossref] 
  17. [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  18. [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  19. [19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.