Basic Properties of Even and Odd Functions

Bo Li; Yanhong Men

Formalized Mathematics (2009)

  • Volume: 17, Issue: 2, page 187-192
  • ISSN: 1426-2630

Abstract

top
In this article we present definitions, basic properties and some examples of even and odd functions [6].

How to cite

top

Bo Li, and Yanhong Men. "Basic Properties of Even and Odd Functions." Formalized Mathematics 17.2 (2009): 187-192. <http://eudml.org/doc/267217>.

@article{BoLi2009,
abstract = {In this article we present definitions, basic properties and some examples of even and odd functions [6].},
author = {Bo Li, Yanhong Men},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {187-192},
title = {Basic Properties of Even and Odd Functions},
url = {http://eudml.org/doc/267217},
volume = {17},
year = {2009},
}

TY - JOUR
AU - Bo Li
AU - Yanhong Men
TI - Basic Properties of Even and Odd Functions
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 2
SP - 187
EP - 192
AB - In this article we present definitions, basic properties and some examples of even and odd functions [6].
LA - eng
UR - http://eudml.org/doc/267217
ER -

References

top
  1. [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  2. [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  3. [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  4. [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  5. [5] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004. 
  6. [6] Chuanzhang Chen. Mathematical Analysis. Higher Education Press, Beijing, 1978. 
  7. [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  8. [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  9. [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  10. [10] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008, doi:10.2478/v10037-008-0021-3.[Crossref] 
  11. [11] Takashi Mitsuishi and Yuguang Yang. Properties of the trigonometric function. Formalized Mathematics, 8(1):103-106, 1999. 
  12. [12] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990. 
  13. [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  14. [14] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003. 
  15. [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  16. [16] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007, doi:10.2478/v10037-007-0009-4.[Crossref] 
  17. [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  18. [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  19. [19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.