Invertible Carnot Groups

David M. Freeman

Analysis and Geometry in Metric Spaces (2014)

  • Volume: 2, Issue: 1, page 248-257, electronic only
  • ISSN: 2299-3274

Abstract

top
We characterize Carnot groups admitting a 1-quasiconformal metric inversion as the Lie groups of Heisenberg type whose Lie algebras satisfy the J2-condition, thus characterizing a special case of inversion invariant bi-Lipschitz homogeneity. A more general characterization of inversion invariant bi-Lipschitz homogeneity for certain non-fractal metric spaces is also provided.

How to cite

top

David M. Freeman. "Invertible Carnot Groups." Analysis and Geometry in Metric Spaces 2.1 (2014): 248-257, electronic only. <http://eudml.org/doc/267299>.

@article{DavidM2014,
abstract = {We characterize Carnot groups admitting a 1-quasiconformal metric inversion as the Lie groups of Heisenberg type whose Lie algebras satisfy the J2-condition, thus characterizing a special case of inversion invariant bi-Lipschitz homogeneity. A more general characterization of inversion invariant bi-Lipschitz homogeneity for certain non-fractal metric spaces is also provided.},
author = {David M. Freeman},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {metric inversion; bi-Lipschitz homogeneity; Carnot groups; sub-Riemannian geometry},
language = {eng},
number = {1},
pages = {248-257, electronic only},
title = {Invertible Carnot Groups},
url = {http://eudml.org/doc/267299},
volume = {2},
year = {2014},
}

TY - JOUR
AU - David M. Freeman
TI - Invertible Carnot Groups
JO - Analysis and Geometry in Metric Spaces
PY - 2014
VL - 2
IS - 1
SP - 248
EP - 257, electronic only
AB - We characterize Carnot groups admitting a 1-quasiconformal metric inversion as the Lie groups of Heisenberg type whose Lie algebras satisfy the J2-condition, thus characterizing a special case of inversion invariant bi-Lipschitz homogeneity. A more general characterization of inversion invariant bi-Lipschitz homogeneity for certain non-fractal metric spaces is also provided.
LA - eng
KW - metric inversion; bi-Lipschitz homogeneity; Carnot groups; sub-Riemannian geometry
UR - http://eudml.org/doc/267299
ER -

References

top
  1. [1] Jürgen Berndt, Franco Tricerri, and Lieven Vanhecke. Generalized Heisenberg groups and Damek-Ricci harmonic spaces, volume 1598 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1995. Zbl0818.53067
  2. [2] Mario Bonk and Bruce Kleiner. Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math., 150(1):127-183, 2002. Zbl1037.53023
  3. [3] Mario Bonk and Bruce Kleiner. Rigidity for quasi-Möbius group actions. J. Diferential Geom., 61(1):81-106, 2002. Zbl1044.37015
  4. [4] Mario Bonk and Bruce Kleiner. Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary. Geom. Topol., 9:219-246 (electronic), 2005. Zbl1087.20033
  5. [5] Stephen M. Buckley, David A. Herron, and Xiangdong Xie. Metric space inversions, quasihyperbolic distance, and uniform spaces. Indiana Univ. Math. J., 57(2):837-890, 2008. Zbl1160.30006
  6. [6] Sergei Buyalo and Viktor Schroeder. Möbius characterization of the boundary at infinity of rank one symmetric spaces. Geom. Dedicata, pages 1-45, 2013. Zbl06357997
  7. [7] Luca Capogna and Michael Cowling. Conformality and Q-harmonicity in Carnot groups. DukeMath. J., 135(3):455-479, 2006. Zbl1106.30011
  8. [8] Michael Cowling, Anthony H. Dooley, Adam Korányi, and Fulvio Ricci. H-type groups and Iwasawa decompositions. Adv. Math., 87(1):1-41, 1991. Zbl0761.22010
  9. [9] Michael Cowling, Anthony H. Dooley, Adam Korányi, and Fulvio Ricci. An approach to symmetric spaces of rank one via groups of Heisenberg type. J. Geom. Anal., 8(2):199-237, 1998.[Crossref] Zbl0966.53039
  10. [10] Michael Cowling and Alessandro Ottazzi. Conformal maps of Carnot groups. preprint, page arXiv:1312.6423, 2013. 
  11. [11] David M. Freeman. Inversion invariant bilipschitz homogeneity. Michigan Math. J., 61(2):415-430, 2012. Zbl1264.30046
  12. [12] David M. Freeman. Transitive bi-Lipschitz group actions and bi-Lipschitz parameterizations. Indiana Univ. Math. J., 62(1):311-331, 2013.[WoS] Zbl1294.30105
  13. [13] Juha Heinonen and Pekka Koskela. Quasiconformalmaps in metric spaceswith controlled geometry. ActaMath., 181(1):1-61, 1998. Zbl0915.30018
  14. [14] Kyle Edward Kinneberg. Rigidity for quasi-Möbius actions on fractal metric spaces. arXiv:1308:0639, 2013. Zbl1328.53052
  15. [15] Linus Kramer. Two-transitive Lie groups. J. Reine Angew. Math., 563:83-113, 2003. Zbl1044.22014
  16. [16] Enrico Le Donne. Geodesic manifolds with a transitive subset of smooth biLipschitz maps. Groups Geom. Dyn., 5(3):567-602, 2011. Zbl1242.53034
  17. [17] Enrico Le Donne. Metric spaces with unique tangents. Ann. Acad. Sci. Fenn. Math., 36(2):683-694, 2011.[Crossref] Zbl1242.54013
  18. [18] Jussi Väisälä. Quasi-Möbius maps. J. Analyse Math., 44:218-234, 1984/85. 
  19. [19] Xiangdong Xie. Quasiconformal maps on model Filiform groups. preprint, page arXiv:1308.3027, 2013. 
  20. [20] Xiangdong Xie. Quasiconformal maps on non-rigid Carnot groups. preprint, page arXiv:1308.3031, 2013. 
  21. [21] Xiangdong Xie. Rigidity of quasiconformal maps on Carnot groups. preprint, page arXiv:1308.3028, 2013. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.