Electronic properties of disclinated nanostructured cylinders
R. Pincak; J. Smotlacha; M. Pudlak
Nanoscale Systems: Mathematical Modeling, Theory and Applications (2013)
- Volume: 2, page 81-95
- ISSN: 2299-3290
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, New York (1964). Zbl0171.38503
- H. Ajiki and T. Ando, Electronic States of Carbon Nanotubes, J. Phys. Soc. Jpn. 62, 1255 (1993).
- T. Ando, Physics of carbon nanotubes, Advances in Solid State Physics 43, 1 (2003).
- T. W. Chamberlain, J. C. Meyer, J. Biskupek, J. Leschner, A. Santana, N. A. Besley et al., Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale, Nature Chemistry 3, 732 (2011). [WoS]
- W.-H. Chiang and R. M. Sankaran, Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth, Appl. Phys. Lett. 91, 121503 (2007). [WoS]
- D. P. DiVincenzo and E. J. Mele, Self-Consistent Effective Mass Theory for Intralayer Screening in Graphite Intercalation Compounds, Phys. Rev. B 29, 1685 (1984).
- O. Hod, J. E. Peralta and G. E. Scuseria, Phys. Rev. B 76, 233401 (2007).
- C. L. Kane and E. J. Mele, Size Shape and Electronic Structure of Carbon Nanotubes, Phys. Rev. Lett. 78, 1932 (1997).
- E. A. Kochetov and V. A. Osipov, Dirac fermions on a disclinated flexible surface, JETP Letters 91, 110 (2010). [WoS]
- E. A. Kochetov, V. A. Osipov and R. Pincak, Electronic properties of disclinated flexible membrane beyond the inextensional limit: application to graphene, J. Phys.: Condens. Matter 22, 395502 (2010). [WoS]
- D. V. Kolesnikov and V. A. Osipov, The continuum gauge field-theory model for low-energy electronic states of icosahedral fullerenes, Eur. Phys. Journ. B 49, 465 (2006).
- D. V. Kolesnikov and V. A. Osipov, Geometry-induced smoothing of van Hove singularities in capped carbon nanotubes, EPL 78, 47002 (2007). [WoS]
- D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Priceet et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458, 872 (2009). [WoS]
- H. W. Kroto, J. R. Heath, S. C. O’Brien et al., C60: Buckminsterfullerene, Nature 318, 162 (1985).
- P. E. Lammert and V. H. Crespi, Graphene cones: classification by fictitious flux and electronic properties, Phys. Rev. B 69, 035406 (2004).
- T. Muramaki, Y. Hasebe, K. Higashi, K. Kisoda, K. Nishio, T. Isshikiet et al., Simultaneous Observation of Single- Walled Carbon Nanotubes and Catalyst Particles on SiO2 Substrate by Transmission Electron Microscopy, Jpn. J. Appl. Phys. 47, 730 (2008).
- I.A. Ovidko, Review on grain boundaries in graphene, curved poly- and nanocrystalline graphene structures as new carbon allotropes, Reviews on Advanced Materials Science 30, 201 (2012).
- R. Pincak and M. Pudlak, chapter in Progress in Fullerene Research with title Electronic structure of spheroidal fullerenes, ed. F. Columbus, Nova Science Publishers, New York (2007).
- M. Pudlak, R. Pincak and V. A. Osipov, Low energy electronic states in spheroidal fullerenes, Phys. Rev. B 74, 235435 (2006).
- S. Reich, C. Thomsen and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004).
- R. Saito, G. Dresselhaus and M. S. Dresselhaus, Tunneling conductance of connected carbon nanotubes, Phys Rev. B 53, 2044 (1996).
- Y. Shimomura, Y. Takane and K. Wakabayashi, Electronic states and local density of states of graphene corner edge, JPS 2010 Spring Meeting The 65th JPS Annual Meeting (2010).
- J. Smotlacha, R. Pincak and M. Pudlak, Electronic Structure of Disclinated Graphene in an Uniform Magnetic Field, Eur.Phys.J. B 84, 255 (2011). Zbl1273.81084
- M. Upadhyay, L. Capolungo, V. Taupin and C. Fressengeas, Grain boundary and triple junction energies in crystalline media: a disclination based approach, Int. J. Solids and Structures 48, 3176 (2011). [WoS]
- K. Wakabayashi, K. Sasaki, T. Nakanishi and T. Enoki, Electronic states of graphene nanoribbons and analytical solutions, Sci. Technol. Adv. Mater. 11, 054504 (2010). [WoS]
- P. R. Wallace, The Band Theory of Graphite, Phys. Rev. 71, 622 (1947). Zbl0033.14304
- K. Zhou, M. S. Wu, and A. A. Nazarov, Relaxation of a disclinated tricrystalline nanowire, Acta Materialia 56, 5828 (2008). [WoS]